题目给定一个字符串,两个人都会选取其中一个回文串。接下来,构造一个新串,持续的添加字母,每个字母有等同的概率出现,问你谁选取的字符串最大可能最先出现。
介绍一下 BorderBorderBorder 理论。对于一个长度为 LLL 的序列 AAA,若 A[1, i]=A[L−i+1, L]A[1,\ i] = A[L - i + 1,\ L]A[1, i]=A[L−i+1, L],则称 A[1, i]A[1,\ i]A[1, i] 是A 的一个 BorderBorderBorder。令 aia_iai 表示 A[1, i]A[1,\ i]A[1, i] 是否是 AAA 的一个 borderborderborder,aia_iai 为 111 表示是,000 为不是。
则有 E(A)=∑i=1Lai∗miE(A)=\sum_{i=1}^La_i*m^iE(A)=∑i=1Lai∗mi,mmm 为字符数量,本题中为 262626。结论来自于 “国家集训队 2018 论文集” 中的 《浅谈生成函数在掷骰子问题上的应用》。
以此结论,我们就可以计算对应的期望,由于两个字符串的期望的计算不同的地方只有它的系数也就是 aia_iai 以及字符串长度 LLL 不同,于是我们可以转换成

博客探讨了在ACM竞赛中的一个问题,涉及字符串的Border理论,回文自动机,树上倍增以及双哈希技术。通过Border理论计算字符串期望,利用树上倍增优化查询复杂度,并使用双哈希确保判断序列相同性的准确性。文章提供了相关算法的实现代码。
最低0.47元/天 解锁文章
8万+

被折叠的 条评论
为什么被折叠?



