自备ACM模板 —— 数学篇

常见求和

∑ i = 1 n i 0 = n \sum_{i=1}^n i^0 =n i=1ni0=n

∑ i = 1 n i 1 = n ( n + 1 ) 2 = 1 2 n 2 + 1 2 n \sum_{i=1}^{n} i^{1} = \frac{n(n+1)}{2} = \frac{1}{2}n^2 +\frac{1}{2} n i=1ni1=2n(n+1)=21n2+21n

∑ i = 1 n i 2 = n ( n + 1 ) ( 2 n + 1 ) 6 = 1 3 n 3 + 1 2 n 2 + 1 6 n \sum_{i=1}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6} = \frac{1}{3}n^3 + \frac{1}{2}n^2 + \frac{1}{6}n i=1ni2=6n(n+1)(2n+1)=31n3+21n2+61n

∑ i = 1 n i 3 = [ n ( n + 1 ) 2 ] 2 = 1 4 n 4 + 1 2 n 3 + 1 4 n 2 \sum_{i=1}^{n} i^{3} = \left[\frac{n(n+1)}{2}\right]^{2} = \frac{1}{4}n^4 + \frac{1}{2}n^3 + \frac{1}{4}n^2 i=1ni3=[2n(n+1)]2=41n4+21n3+41n2

∑ i = 1 n i 4 = n ( n + 1 ) ( 2 n + 1 ) ( 3 n 2 + 3 n − 1 ) 30 = 1 5 n 5 + 1 2 n 4 + 1 3 n 3 − 1 30 n \sum_{i=1}^{n} i^{4} = \frac{n(n+1)(2n+1)(3n^2+3n-1)}{30} = \frac{1}{5}n^5 + \frac{1}{2}n^4 + \frac{1}{3}n^3 - \frac{1}{30}n i=1ni4=30n(n+1)(2n+1)(3n2+3n1)=51n5+21n4+31n3301n

∑ i = 1 n i 5 = n 2 ( n + 1 ) 2 ( 2 n 2 + 2 n − 1 ) 12 = 1 6 n 6 + 1 2 n 5 + 5 12 n 4 − 1 12 n 2 \sum_{i=1}^{n} i^{5} = \frac{n^{2}(n+1)^{2}(2n^2+2n-1)}{12} = \frac{1}{6}n^6 + \frac{1}{2}n^5 + \frac{5}{12}n^4 - \frac{1}{12}n^2 i=1ni5=12n2(n+1)2(2n2+2n1)=61n6+21n5+125n4121n2

∑ i = 1 n i 6 = n ( n + 1 ) ( 2 n + 1 ) ( 3 n 4 + 6 n 3 − 3 n + 1 ) 42 = 1 7 n 7 + 1 2 n 6 + 1 2 n 5 − 1 6 n 3 + 1 42 n \sum_{i=1}^{n} i^{6} = \frac{n(n+1)(2n+1)(3n^4+6n^3-3n+1)}{42} = \frac{1}{7}n^7 + \frac{1}{2}n^6 + \frac{1}{2}n^5 - \frac{1}{6}n^3 + \frac{1}{42}n i=1ni6=42n(n+1)(2n+1)(3n4+6n33n+1)=71n7+21n6+21n561n3+421n

∑ i = 1 n i 7 = n 2 ( n + 1 ) 2 ( 3 n 4 + 6 n 3 − n 2 − 4 n + 2 ) 24 = 1 8 n 8 + 1 2 n 7 + 7 12 n 6 − 7 24 n 4 + 1 12 n 2 \sum_{i=1}^{n} i^{7} = \frac{n^2(n+1)^2(3n^4+6n^3-n^2-4n+2)}{24} = \frac{1}{8}n^8 + \frac{1}{2}n^7 + \frac{7}{12}n^6 - \frac{7}{24}n^4 + \frac{1}{12}n^2 i=1ni7=24n2(n+1)2(3n4+6n3n24n+2)=81n8+21n7+127n6247n4+121n2

∑ i = 1 n i 8 = n ( n + 1 ) ( 2 n + 1 ) ( 5 n 6 + 15 n 5 + 5 n 4 − 15 n 3 − n 2 + 9 n − 3 ) 90 = 1 9 n 9 + 1 2 n 8 + 2 3 n 7 − 7 15 n 5 + 2 9 n 3 − 1 30 n \sum_{i=1}^{n} i^{8} = \frac{n(n+1)(2n+1)(5n^6+15n^5+5n^4-15n^3-n^2+9n-3)}{90}=\frac{1}{9}n^9 + \frac{1}{2}n^8 + \frac{2}{3}n^7 - \frac{7}{15}n^5 + \frac{2}{9}n^3 - \frac{1}{30}n i=1ni8=90n(n+1)(2n+1)(5n6+15n5+5n415n3n2+9n3)=91n9+21n8+32n7157n5+92n3301n

∑ i = 1 n i 9 = n 2 ( n + 1 ) 2 ( n 2 + n − 1 ) ( 2 n 4 + 4 n 3 − n 2 − 3 n + 3 ) 20 = 1 10 n 10 + 1 2 n 9 + 3 4 n 8 − 7 10 n 6 + 1 2 n 4 − 3 20 n 2 \sum_{i=1}^{n} i^{9} = \frac{n^2(n+1)^2(n^2+n-1)(2n^4+4n^3-n^2-3n+3)}{20}=\frac{1}{10}n^{10}+\frac{1}{2}n^9+\frac{3}{4}n^8-\frac{7}{10}n^6+\frac{1}{2}n^4-\frac{3}{20}n^2 i=1ni9=20n2(n+1)2(n2+n1)(2n4+4n3n23n+3)=101n10+21n9+43n8107n6+21n4203n2

∑ i = 1 n i 10 = n ( n + 1 ) ( 2 n + 1 ) ( n 2 + n − 1 ) ( 3 n 6 + 9 n 5 + 2 n 4 − 11 n 3 + 3 n 2 + 10 n − 5 ) 66 = 1 11 n 11 + 1 2 n 10 + 5 6 n 9 − n 7 + n 5 − 1 2 n 3 + 5 66 n \sum_{i=1}^{n} i^{10} = \frac{n(n+1)(2n+1)(n^2+n-1)(3n^6+9n^5+2n^4-11n^3+3n^2+10n-5)}{66}=\frac{1}{11}n^{11}+\frac{1}{2}n^{10}+\frac{5}{6}n^9-n^7+n^5-\frac{1}{2}n^3+\frac{5}{66}n i=1ni10=66n(n+1)(2n+1)(n2+n1)(3n6+9n5+2n411n3+3n2+10n5)=111n11+21n10+65n9n7+n521n3+665n

∑ i = 0 n i m − 1 = ∑ k = 0 m S k m n k \sum_{i=0}^{n} i^{m-1} = \sum_{k=0}^m S_k^m n^k i=0nim1=k=0mSkmnk,其中 S 0 m = 0 S_0^m = 0 S0m=0 S m m = 1 m S_m^m = \frac{1}{m} Smm=m1,當m−k為大於1的奇數時, S k m = 0 S_k^m = 0 Skm=0

∑ i = 0 n i m = 1 m + 1 ∑ i = 0 m ( m + 1 i ) B i ( n + 1 ) m + 1 − i \sum_{i=0}^{n} i^m = {1\over{m+1}}\sum_{i=0}^m{m+1\choose{i}} B_i (n+1)^{m+1-i} i=0nim=m+11i=0m(im+1)Bi(n+1)m+1i,其中 B i B_i Bi 是伯努利数。

∑ i = 1 n i m + 1 = ∑ k = 0 m L k m ( n + k + 1 m + 2 ) , ( L k m = ∑ r = 0 k ( − 1 ) r ( m + 2 r ) ( k + 1 − r ) m + 1 ) \displaystyle \sum_{i=1}^n i^{m+1} = \sum_{k=0}^m L_k^m \binom{n+k+1}{m+2},\left(L_k^m = \sum_{r=0}^k (-1)^r \binom{m+2}{r} (k+1-r)^{m+1}\right) i=1nim+1=k=0mLkm(m+2n+k+1),(Lkm=r=0k(1)r(rm+2)(k+1r)m+1)

常见规律

毕达哥拉斯三元组数

       毕达哥拉斯三元数组又称毕达哥拉斯数或商高数。它是数形结合的一个典型例子。

       毕达哥拉斯学派研究出了一个公式:若 m m m 是奇整数,则 m , ( m 2 − 1 ) 2 m,\frac{(m^2-1)}{2} m,2(m21) ( m 2 + 1 ) 2 \frac{(m^2+1)}{2} 2(m2+1) 便是三元数组,它们分别表示一个直角三角形的两条直角边和斜边。

       如今我们把能形成直角三角形三条边的三个整数所构成的任何集合统称为毕达哥拉斯三元数组。

三角形数

       一定数目的点或圆在等距离的排列下可以形成一个等边三角形,这样的数被称为三角形数。

       通项公式 s n = n ( n + 1 ) 2 s_n=\frac{n(n+1)}{2} sn=2n(n+1)

四角形数

       又称平方数,正方形数,从 1 1 1 开始,任意 n n n 个相继的奇数之和是完全平方数, 1 + 3 + ⋯ + ( 2 n − 1 ) = n 2 1+3+\cdots+(2n-1)=n^2 1+3++(2n1)=n2

       通项公式 s n = n 2 = n ( n + 1 ) 2 + n ( n − 1 ) 2 s_n=n^2=\frac{n(n+1)}{2}+\frac{n(n-1)}{2} sn=n2=2n(n+1)+2n(n1)。等于两个相邻的三角形数之和。

五边形数

       通项公式 p n = 3 n 2 − n 2 = s t r i a n g l e ( 3 n − 1 ) p_n=\frac{3n^2-n}{2}=s_{triangle}(3n-1) pn=23n2n=striangle(3n1)。同时满足 ∑ i n p i n = s t r i a n g l e ( n ) \frac{\sum_{i}^np_i}{n}=s_{triangle}(n) ninpi=striangle(n)

       广义五边形数,通项公式 p n = 3 n 2   ±   n 2 p_n=\frac{3n^2\ ±\ n}{2} pn=23n2 ± n

       所有的整数都可以表示成不超过3个广义五边形数的和。若三角形数可以被3整除,则除以3之后的数必为广义五边形数。

六边形数

       通项公式 s n = n ( 2 n − 1 ) = s t r i a n g l e ( 2 n − 1 ) s_n=n(2n-1)=s_{triangle}(2n-1) sn=n(2n1)=striangle(2n1)

       1830年勒让德证明了任何大于1791的整数都能表达成最多4个六边形数之和。

七边形数

       通项公式 s n = 5 n 2 − 3 n 2 s_n=\frac{5n^2-3n}{2} sn=25n23n

       一个七边形数的五倍再加一是一个三角形数。

八边形数

       又称星数,通项公式 s n = 3 n 2 − 2 n s_n=3n^2-2n sn=3n22n

高精度

打题过程,中间变量不回收,用
System.gc();
缓解内存压力
// BigInteger
BigInteger abs()  					返回大整数的绝对值
BigInteger add(BigInteger val) 		返回两个大整数的和
BigInteger and(BigInteger val)  	返回两个大整数的按位与的结果
BigInteger andNot(BigInteger val) 	返回两个大整数与非的结果
BigInteger divide(BigInteger val)  	返回两个大整数的商
double doubleValue()   				返回大整数的double类型的值
float floatValue()   				返回大整数的float类型的值
BigInteger gcd(BigInteger val)  	返回大整数的最大公约数
int intValue() 						返回大整数的整型值
long longValue() 					返回大整数的long型值
BigInteger max(BigInteger val) 		返回两个大整数的最大者
BigInteger min(BigInteger val) 		返回两个大整数的最小者
BigInteger mod(BigInteger val) 		用当前大整数对val求模
BigInteger multiply(BigInteger val) 返回两个大整数的积
BigInteger negate() 				返回当前大整数的相反数
BigInteger not() 					返回当前大整数的非
BigInteger or(BigInteger val) 		返回两个大整数的按位或
BigInteger pow(int exponent) 		返回当前大整数的exponent次方
BigInteger remainder(BigInteger val) 返回当前大整数除以val的余数
BigInteger leftShift(int n) 		将当前大整数左移n位后返回
BigInteger rightShift(int n) 		将当前大整数右移n位后返回
BigInteger subtract(BigInteger val)	返回两个大整数相减的结果
byte[] toByteArray(BigInteger val)	将大整数转换成二进制反码保存在byte数组中
String toString() 					将当前大整数转换成十进制的字符串形式
BigInteger xor(BigInteger val) 		返回两个大整数的异或
int compareTo(BigInteger val) 		val大,返回-1;等于,返回0;val小,返回1
bool isProbablePrime(int val)		true or false

String string1 = new BigInteger("20", 10).toString(2);
        Log.d("TAG","十进制的20转换成二进制是:"+string1);


// BigDecimal 同理
DecimalFormat df = new DecimalFormat("#.00");
BigDecimal obj
df.format(obj).toString()			控制精度为两位

随机化

std::mt19937 rnd(time(0));
x = rnd() % n + 1;

整数域三分

while(l < r){
   
    int m1 = (2*l + r)/3;
    int m2 = (2*r + l + 2)/3;
    if(cal(m1) < cal(m2))
        r = m2 - 1;
    else
        l = m1 + 1;
}
return l;

整数域二分

二分查找下界
int lower_bound( int key , int* Array , int left , int right){
       
	while( left < right )    {
          
 		int mid = left + (right - left) / 2;      
  		if ( Array[mid] >= key ) right = mid; // 这说明 mid的左边可能还有        
		else left = mid + 1; 
	}   
 	return left;
}
//from  ysb大佬
二分查找上界
int upper_bound( int key , int* Array , int left , int right ){
    
   	while( left < right )    {
   
        int mid = left + ( rifht - left ) / 2;
		if ( Array[mid] <= key ) left = mid + 1;
		else right = mid;
    }
	return left;
}
// from ysb大佬

数论

筛法

        1 ≤ a , b ≤ 1 e 9 ; 0 ≤ b − a ≤ 1 e 4 1\le a,b\le 1e9;0\le b- a\le 1e4 1a,b1e9;0ba1e4,利用 a a a 找到小于等于 a a a 的最大的质数的倍数,利用质数筛掉 [ a , b ] [a,b] [a,b] 区间内的合数。复杂度大概是 O ( b ∗ l o g L ) , L = b − a O(\sqrt{b}*logL),L=b-a O(b logL),L=ba

#include<stdio.h>
#include<string.h>
#include<math.h>
#include<cmath>
#include<algorithm>
#define endl '\n'
using namespace std;
typedef long long LL;
const int maxn = 1e5 + 5;
const int mod = 1e9 + 7;
int cnt;
int prime[maxn];
bool vis[maxn];

inline void sieve(){
   
    for(int i = 2; i < maxn; i++){
   
        if(!vis[i])
            prime[++cnt] = i;
        for(int j = 1, v; j <= cnt && (v = prime[j] * i) < maxn; j++){
   
            vis[v] = true;
            if(!(i % prime[j])) break;
        }
    }
}

int main(){
   
    int t, cas = 0, a, b, ans, sqb;
    sieve();
    scanf("%d", &t);
    while(t--){
   
        scanf("%d%d", &a, &b);
        memset(vis, 0, sizeof(vis));
        sqb = sqrt(b + 1.0);
        for(int i = 1; i <= cnt && prime[i] <= sqb; i++)
            for(LL j = (LL)max((a - 1) / prime[i] + 1, 2) * prime[i]; j <= b; j += prime[i])
                vis[j - a] = true;
        ans = 0;
        b -= a;
        for(int i = 0; i <= b; i++)
            if(!vis[i])
                ans++;
        if(a == 1) ans--;
        printf("Case %d: %d\n", ++cas, ans);
    }
}

逆元

       逆元存在充分必要条件为 gcd ⁡ ( a , p ) = 1 \gcd(a,p)=1 gcd(a,p)=1
       扩展欧几里得求逆元,求 a a a 关于 b b b 的逆元,最后的逆元为 ( x % p + p ) % p (x \% p + p)\%p (x%p+p)%p

inline void exgcd(int a, int b, int &x, int &y){
   
    if(!b){
   x = 1, y = 0; return;}
    exgcd(b, a % b, x, y);
    int t = x;
    x = y;
    y = t - (a / b) * y;
    return;
}

       费马小定理求逆元,逆元为 a φ ( p ) − 1 a^{\varphi(p)-1} aφ(p)1

       快速求一个数的欧拉函数值如下

LL ans = n;
    for(int i=2; i*i <= n; i++){
   
        if(n%i == 0){
   
            ans = ans/i*(i-1);
            while(n%i == 0)
				n/=i;
        }
    }
    if(n > 1) ans = ans/n*(n-1);

线性时间求逆元

#include<bits/stdc++.h>
using namespace std;
#define endl '\n'
#define IOS ios::sync_with_stdio(false); cin.tie(0); cout.tie(0)
typedef long long LL;
const LL maxn = 3e6 + 5;
LL num[maxn];

int main(){
   
    IOS;
    int n;
    LL p;
    cin >> n >> p;
    num[1] = 1;
    for(int i = 2; i <= n; i++)
        num[i] = ((p - p / i) * num[p % i]) % p;
    for(int i = 1; i <= n; i++)
        cout << num[i] << endl;
}

斐波那契

       关于斐波那契数列的一些恒等式
       1: F 1 + F 2 + ⋯ + F n = F n + 2 − 1 F_1+F_2+\cdots+F_n=F_{n+2}-1 F1+F2++Fn=Fn+21
       2: F 1 2 + F 2 2 + ⋯ + F n 2 = F n F n + 1 F_1^2+F_2^2+\cdots+F_n^2=F_{n}F_{n+1} F12+F22++Fn2=FnFn+1
       3: F 1 + F 3 + F 5 + ⋯ + F 2 n − 1 = F 2 n F_1+F_3+F_5+\cdots+F_{2n-1}=F_{2n} F1+F3+F5++F2n1=F2n
       4: F 2 + F 3 + F 6 + ⋯ + F 2 n = F 2 n + 1 − 1 F_2+F_3+F_6+\cdots+F_{2n}=F_{2n+1}-1 F2+F3+F6++F2n=F2n+11
       5: F n = F m F n − m + 1 + F m − 1 F

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值