list index out of range:在TensorFlow设置GPU运行时报错 在设置TensorFlow设置GPU运行时报错:`list index out of range`。遇到此类问题比较多的主要是使用的TensorFlow2.X以上版本的项目。我们需要将系统环境设置为CPU进行运行。
win32ui模块安装不了怎么办 win32ui安装不了怎么办。win32ui安装解决办法:pip install pywin32。win32ui安装时报错:ERROR: Could not find a version that satisfies the requirement win32ui (from versions: none)ERROR: No matching distribution found for win32ui
手把手教你:基于Django的新闻文本分类可视化系统(文本分类由bert实现) 本文主要介绍如何使用python语言,基于bert的文本分类和Django的网站设计实现一个:基于Django和bert的新闻文本分类可视化系统,如果有毕业设计或者课程设计需求的同学可以参考本文。本项目同时使用了深度学习框架TensorFlow 1.X的版本,IDE为pycharm。本次任务是一个较为复杂的新闻文本分类的任务,首先需要使用bert模型对新闻文本进行分类,然后使用Django构建一个文本分类结果查询的可视化系统。我们的任务是要构建一个模型,任意输入一篇新闻文章,可以将新闻文本分为以下10类
使用pycharm连接mysql数据库报错:DB Navigator Connection error 本文介绍了:pycharm连接mysql数据库报错,如何解决。DB Navigator连接mysql数据库报错,如何解决。连接mysql数据库报错:DB Navigator - Connection errorCannot connect to "XXXX".The server time zone value XXXX is unrecognized or represents more than one time zone.
手把手教你:基于python的文本分类(sklearn-决策树和随机森林实现) 本文主要介绍如何使用python的sk-learn机器学习框架搭建一个或多个:文本分类的机器学习模型,如果有毕业设计或者课程设计需求的同学可以参考本文。本项目使用了决策树和随机森林2种机器学习方法进行实验,完整代码在最下方,想要先看源码的同学可以移步本文最下方进行下载。博主也参考过文本分类相关模型的文章,但大多是理论大于方法。很多同学肯定对原理不需要过多了解,只需要搭建出一个可视化系统即可。
手把手教你:岩石样本智能识别系统 本文主要介绍如何使用python的TensorFlow2.0深度学习框架搭建一个:岩石样本的智能识别系统。最终识别准确率能达到95%。本项目来自于第九届“泰迪杯”数据挖掘挑战赛的B题:岩石样本的智能识别。通过使用python的TensorFlow框架,构建基于cnn和resnet的分类网络对岩石样本进行分类,最终识别准确率能达到95%,如果有毕业设计或者课程设计需求的同学可以参考本文。
手把手教你:基于TensorFlow的语音识别系统 本文主要介绍如何使用python搭建一个:基于TensorFlow的语音识别系统。本文主要分为3部分: - 1、项目数据集介绍。 - 2、项目功能及相关代码展示。 - 3、项目完整下载地址。博主也参考过语音识别系统相关模型的文章,但大多是理论大于方法。很多同学肯定对原理不需要过多了解,只需要搭建出一个可视化系统即可。也正是因为我发现网上大多的帖子只是针对原理进行介绍,功能实现的相对很少。如果您有以上想法,那就找对地方了!
手把手教你:基于Django的用户画像可视化系统 本文主要介绍如何使用python搭建一个:基于RFM的用户画像可视化系统。本项目分为2部分: 1、RFM模型构建,用户画像数据输出。 2、网站搭建,提供用户画像查阅功能。
手把手教你:个人信贷违约预测模型 本文主要介绍如何使用python搭建:基于三个经典机器学习算法(朴素贝叶斯、随机森林、逻辑回归)的个贷违约预测模型。项目只是用个贷违约预测作为抛砖引玉,其中包含了使用模型进行预测的相关代码。主要功能如下:1、数据预处理。2、模型构建及训练,三大模型:朴素贝叶斯、随机森林、逻辑回归。3、预测违约情况并进行模型评估。如各位童鞋需要更换训练数据,完全可以根据源码将图像和标注文件更换即可直接运行。
手把手教你:基于LSTM的股票预测系统 本文主要介绍如何使用python搭建:一个基于长短期记忆网络(LSTM:Long Short-Term Memory, 简称 LSTM)的股票、大宗商品预测系统。项目只是用股票预测作为抛砖引玉,其中包含了使用LSTM进行时序预测的相关代码。主要功能如下: - 数据预处理。 - 模型构建及训练,使用tensorflow构建LSTM网络。 - 预测股票时序走向并进行模型评估。如各位童鞋需要更换训练数据,完全可以根据源码将图像和标注文件更换即可直接运行。