Task2

文本预处理

文本是一类序列数据,一篇文章可以看作是字符或单词的序列,本节将介绍文本数据的常见预处理步骤,预处理通常包括四个步骤:

  • 读入文本
  • 分词
  • 建立字典,将每个词映射到一个唯一的索引(index)
  • 将文本从词的序列转换为索引的序列,方便输入模型
  • 用现有工具进行分词

前面介绍的分词方式非常简单,至少有以下几个缺点:

  • 标点符号通常可以提供语义信息,但是我们的方法直接将其丢弃了
  • 类似“shouldn’t", "doesn’t"这样的词会被错误地处理
  • 类似"Mr.", "Dr."这样的词会被错误地处理

可以通过引入更复杂的规则来解决这些问题,但是事实上,有一些现有的工具可以很好地进行分词,简单介绍其中的两个:spaCy和NLTK。

语言模型

在这里插入图片描述
不难理解就是统计学意义上的概率问题。注意一下随机采样与相邻采样之间的区别。
在这里插入图片描述

循环神经网络

在这里插入图片描述
使用 Pytorch 中的 nn.RNN 构造神经网络
在这里插入图片描述
在这里插入图片描述
所以需要裁剪梯度。
在这里插入图片描述
对于语言模型的评价,采用困惑度。
在这里插入图片描述

GRU

区别:

  • RNN存在问题:梯度容易出现衰减或者爆炸。
  • GRU:捕捉时间序列中时间步距离较大的依赖关系。

在这里插入图片描述

LSTM在这里插入图片描述

代码见

动手学深度学习PyTorch版

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值