当确定一个研究方向后,需要快速明确研究方向的特定关键词,梳理领域相关的会议和期刊
会议和期刊是学术成果交流与发表的两个重要渠道,它们在审稿周期、发表内容与形式、影响力与认可度以及受众与目的等方面存在区别
- 会议:通常具有较短的审稿周期,能够在较短时间内给予作者反馈。侧重于发表具有创新性、时效性和前沿性的研究成果。会议论文通常要求简洁明了,强调研究的突破性和影响力。因此,会议更适合于快速分享研究成果,吸引同行关注,并促进学术交流与合作。
- 期刊:审稿周期较长,通常需要经过多轮评审和修订。注重研究的深度和广度,要求文章具有完整的方法论、实验验证和理论分析。期刊论文通常更加详细。因此,期刊更适合于发表具有长期学术价值的研究成果,为学术界提供深入的学术探讨和思考。
查找论文的渠道有:
- 到对应期刊或者会议论文收录的官网去查
- 谷歌学术搜索,https://scholar.google.com.hk/?hl=zh-CN,对应镜像有谷粉学术
- Arxiv,了解相关领域最近进展以及免费下载论文的同行学术交流平台
- DBLP,是一个计算机科学领域文献的在线数据库,它主要收录了会议、期刊和研讨会的论文信息
- CVF,是一个专注于计算机视觉领域的学术组织,它维护了一个开放访问的论文库,包含了多个顶级计算机视觉会议的论文(如CVPR、ICCV、WACV等)
- sci-hub 文献小镇,SCI-HUB国外文献免费下载,会存在论文找不到的情况
- Web of Science,是一个收费的数据库,首先得有一个账号,或者通过学校图书馆访问
- Researchgate,科研社交网络服务网站,类似于小木虫
- Connected Papers,① 输入所查阅的文献后,即可呈现一个可视化的相关文献网络图。② 可视化的相关文献网络图列举的都是与本研究领域最相关以及最重要的文献,帮助快速筛选出所要了解的背景知识相关文献。③ 帮助寻找本文后续相关研究进展的文献,为将来的研究方向指路。
查找论文代码的渠道有:
1.Github
直接搜相关论文,或者技术的关键词,搜索对应的仓库
2.Catalyzex
面向生产商和制造商的机器学习hub,在它的官方网站上可以按需搜索AI模型论文及其代码
3.Papers with Code,Browse State-of-the-Art
将ArXiv上的最新的人工智能的论文与GitHub上的代码对应起来,使得既能看到最新的论文,也能看到论文算法对应实现的代码
AI领域的重要国际会议(Conference)
简称 | 全称 | 简介 |
---|---|---|
AAAI | American Association of Artificial Intelligence Conference | AI领域的重要国际会议之一,涵盖了人工智能的多个研究方向,包括机器学习、自然语言处理、计算机视觉等。 |
IJCAI | International Joint Conference on Artificial Intelligence | AI领域历史最悠久的顶级会议之一,已存在有50多年。 |
ICML | International Conference on Machine Learning | 机器学习领域的顶级会议之一,吸引了全球范围内的机器学习研究人员和从业者参加。 |
NeurIPS | Conference on Neural Information Processing Systems | 机器学习和计算神经科学领域的顶级会议,研究方向涵盖深度学习、神经网络、强化学习等。 |
CVPR | Conference on Computer Vision and Pattern Recognition | 计算机视觉领域的重要会议之一,研究方向涵盖图像识别、视频分析、计算机视觉等。 |
ICCV | International Conference on Computer Vision | 与ECCV和CVPR齐名,是计算机视觉领域的顶级会议之一。 |
ICLR | International Conference on Learning Representations | 深度学习的最新进展,相对年轻,已迅速崛起为深度学习领域的顶级会议之一。 |
ACL | Annual Meeting of the Association for Computational Linguistics | 自然语言处理领域的顶级会议之一,研究方向涵盖自然语言处理、计算语言学、信息检索等。 |
EMNLP | Conference on Empirical Methods in Natural Language Processing | 重点关注自然语言处理的经验性研究,是自然语言处理领域的另一重要会议。 |
RSS | Robotics: Science and Systems | 机器人领域的顶级会议之一,涵盖了机器人学、控制理论、计算机科学等多个学科。 |
AI领域的重要期刊(Journal)
不同研究方向有各自不同的重要期刊,需要根据特定方向有针对性的收录,下面只整理了一部分
名称 | 简介 |
---|---|
TPAMI (IEEE Transactions on Pattern Analysis and Machine Intelligence) | 是计算机视觉和模式识别领域的权威期刊。 |
Nature Machine Intelligence | 属于Nature系列期刊,专注于人工智能领域的研究,发表的研究涉及人工智能的各个方向,包括机器学习、深度学习、自然语言处理等。 |
Artificial Intelligence | AI领域的老牌期刊之一,发表的研究覆盖了人工智能的多个方面。 |
Machine Learning | 机器学习领域的顶级期刊,专注于机器学习算法、理论和应用的研究。 |
Neural Networks | 神经网络领域的权威期刊,发表的研究涵盖了神经网络的原理、算法和应用等方面。 |
IEEE Transactions on Neural Networks and Learning Systems | IEEE旗下的神经网络和学习系统领域的顶级期刊,发表的研究涉及神经网络、深度学习、强化学习等。 |
Information Fusion | 信息融合领域的顶级期刊,专注于信息融合的理论、方法和应用的研究。 |
Journal of Artificial Intelligence Research | AI领域的顶级期刊,发表的研究覆盖了人工智能的多个方面,包括机器学习、知识表示、推理等。 |
International Journal of Computer Vision | 计算机视觉领域的权威期刊,发表的研究涉及计算机视觉、图像处理、模式识别等。 |