Spark核心编程_RDD
1. RDD创建
-
从集合(内存)中创建RDD
从集合中创建RDD,Spark主要提供了两个方法:parallelize和makeRDD
val sparkConf = new SparkConf().setMaster("local[*]").setAppName(this.getClass.getSimpleName.filter(!_.equals('$'))) val sparkContext = new SparkContext(sparkConf) val rdd1 = sparkContext.parallelize(List(1, 2, 3, 4)) val rdd2 = sparkContext.makeRDD(List(1, 2, 3, 4))
从底层代码实现来讲,makeRDD方法其实就是parallelize方法
def makeRDD[T: ClassTag] ( seq: Seq[T], numSlices: Int = defaultParallelism): RDD[T] = withScope { parallelize(seq, numSlices) }
-
从外部存储(文件)创建RDD
由外部系统的数据集创建RDD包括:本地的文件系统,所有Hadoop支持的数据集
val SparkConf = new SparkConf().setMaster("local[*]").setAppName(this.getClass.getSimpleName.filter(!_.equals('$'))) val SparkContext = new SparkContext(sparkConf) val fileRDD: RDD[String] = sparkContext.textFile("inputPath") fileRDD.collect().foreach(println) sparkContext.stop()
-
从其他RDD创建
主要是通过一个RDD运算完成后,再产生新的RDD
-
直接创建RDD(new)
使用new的方式直接构造RDD,一般由Spark框架自身使用
2. RDD并行度与分区
默认情况下,Spark可以将一个作业切分多个任务后,发送给Executor节点并行计算,而能够并行计算的任务数量我们称之为并行度。这个数量可以在构建RDD时指定。
val sparkConf = new SparkConf().setMaster("local[*]").setAppName(this.getClass.getSimple.filter(!_.equals('$')))
val sparkContext = new SparkContext(sparkConf)
val dataRDD: RDD[Int] = sparkContext.makeRDD(List(1, 2, 3, 4), 4)
val fileRDD: RDD[String] = sparkContext.textFile("input", 2)
fileRDD.collect().foreach(println)
sparkContext.stop()
-
读取内存数据时,数据可以按照并行度的设定进行数据的分区操作,数据分区规则的Spark核心源码如下:
-
读取文件数据时,数据是按照Hadoop文件读取的规则进行切片分区,而切片规则和数据读取的规则有些差异,具体Spark核心源码如下:
3. RDD转换算子
RDD根据数据处理方式的不同将算子整体上分为Value类型、双Value类型和Key-Value类型。
1. Value类型
-
map
- 函数签名 def map[U: ClassTag](f: T => U): RDD[U] - 函数说明 将处理的数据逐条进行映射转换,这里的转换可以是类型的转换,也可以是值的转换。
-
mapPartitions
- 函数签名 def mapPartitions[U: ClassTag](f: Iterator[T] => Itertor[U], preservesPartitionint: Boolean = false): RDD[U] - 函数说明 将待处理的数据以分区为单位发送到计算节点进行处理,这里的处理是指可以进行任意的处理,哪怕是过滤数据。
map和mapPartitions的区别?
- 数据处理角度
map算子在分区内一个数据一个数据的执行,类似于串行操作。而mapPartitions算子是以分区为单位进行批处理操作。
- 功能的角度
map算子主要目的是将数据源中的数据进行转换和改变。但不会减少或增多数据。mapPartitions算子需要传递一个迭代器,返回一个迭代器,没有要求的元素的个数保持不变,所以可以增加或减少数据。
- 性能的角度
map算子因为类似于串行操作,所以性能比较低,而是mapPartitions算子类似于批处理,所以性能高。但是mapPartitions算子会长时间的占用内存,那么这样会导致内存可能不够用,出现内存溢出的错误。所以在内存有限的情况下,不推荐使用。
-
mapPartitionsWithIndex
- 函数签名 def mapPartitionsWithIndex[U: ClassTag](f: (Int, Itertor[T]) => Itertor[U], preservesPartitions: Boolean = false): RDD[U] - 函数说明 将待处理的数据以分区为单位发送到计算节点进行处理,这里的处理是值可以进行任意的处理,哪怕是过滤数据,在处理同时可以获取当前分区索引。
-
flatMap
- 函数签名 def flatMap[U: ClassTag](f: T => TraversableOnce[U]): RDD[U] - 函数说明 将处理的数据进行扁平化后在进行映射处理,所以算子也称之为扁平映射。
-
glom
- 函数签名 def glom(): RDD[Array[T]] - 函数说明 将同一个分区的数据直接转换为相同类型的内存数组进行处理,分区不变。
-
groupBy
- 函数签名 def groupBy[K](f: T => K)(implicit kt: ClassTag[K]): RDD[(K, Iterable[T])] - 函数说明 将数据根据指定的规则进行分组,分区默认不变,但是数据会被打乱重新组合,我们将这样的操作称之为shuffle。极限情况下,数据可能被分在同一个分区中。 一个组的数据在一个分区中,但是并不是说一个分区中只有一个组。
-
filter
- 函数签名 def filter(f: T => Boolean): RDD[T] - 函数说明 将数据根据指定的规则进行筛选过滤,符合规则的数据保留,不符合规则的数据丢弃。当数据进行筛选后,分区不变,但是分区内的数据可能不均衡,生产环境下,可能会出现数据倾斜。
-
sample
- 函数签名 def sample(withReplacement: Boolean, fraction: Double, seed: Long = Utils.random.nextLong): RDD[T] - 函数说明 根据指定的规则从数据集中抽取数据。
-
distinct
- 函数签名 def distinct()(implicit ord: Ordering[T] = null): RDD[T] def distinct()(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T] - 函数说明 将数据集中重复的数据去重。
-
coalesce
- 函数签名 def coalesce(numPartitions: Int, shuffle: Boolean = false, partitionCoalescer: Option[PartitionCoalescer] = Option.empty)(implicit ord: Ordering[T] = null): RDD[T] - 函数说明 根据数据量缩减分区,用于大数据集过滤后,提高小数据集的执行效率。当spark程序中,存在过多的小任务的时候,可以通过coalesce方法,收缩合并分区,减少分区的个数,减少任务调度成本。
-
repartition
- 函数签名 def repartition(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T] - 函数说明 该操作内部其实执行的是coalesce操作,参数shuffle的默认值为true。无论将分区数多的RDD转换为分区数少的RDD,还是将分区数少的RDD转换为分区数多的RDD,repartition操作都可以完成,因为无论如果都会经shuffle过程。
-
sortBy
- 函数签名 def sortBy[K](f: (T) => K, ascending: Boolean = true, numPartitions: Int = thie.partitions.length)(implicit ord: Ordering[K], ctag: ClassTag[K]): RDD[T] - 函数说明 该操作作用域排序数据。在排序之前,可以将数据通过f函数进行处理,之后按照f函数处理的结果排序,默认为升序排列。排序后新产生的RDD的分区数与原RDD的分区数一致。中间存在shuffle的过程。
2. 双Value类型
-
intersection
- 函数签名 def intersection(other: RDD[T]): RDD[T] - 函数说明 对源RDD和参数RDD求交集后返回一个新的RDD,要求两个RDD的数据类型要相同。
-
union
- 函数签名 def union(other: RDD[T]): RDD[T] - 函数说明 对源RDD和参数RDD求并集后返回一个新的RDD,要求两个RDD的数据类型要相同。
-
subtract
- 函数签名 def subtract(other: RDD[T]): RDD[T] - 函数说明 以一个RDD为主,去除两个RDD中重复元素,将其他元素保留下来,求差集。要求两个RDD的数据类型要相同。
-
zip
- 函数签名 def zip[U: ClassTag](other: RDD[U]): RDD[(T, U)] - 函数说明 将两个RDD中的元素,以键值对的形式进行合并。其中,键值对中的Key为第1个RDD中的元素,Value为第2个RDD中的相同位置的元素。要求两个RDD的分区数量并且分区中的元素个数也要相同。
3. Key-Value类型
-
partitionBy
- 函数签名 def partitionBy(partitioner: Partitioner): RDD[(K, V)] - 函数说明 将数据按照指定Partitioner重新进行分区。Spark默认的分区器是HashPartitioner。Spark共有两个已经实现的分区器,分别是HashPartitioner和RangePartitioner,RangePartitioner主要用于排序时的分区器。如果重分区的分区器和当前RDD的分区器一样(分区器一样,分区数量一样),此时Spark并不会进行任何操作。
-
reduceByKey
- 函数签名 def reduceByKey(func: (V, V) => V): RDD[(K, V)] def reduceByKey(func: (V, V) => V, numPartitions: Int): RDD[(K, V)] - 函数说明 可以将数据按照相同的Key对Value进行聚合。Spark的聚合也是两两聚合,并且如果某个Key只存在一个值,是不参与运算的。会将数据打乱重组,存在shuffle操作。reduceByKey的分区内和分区间的计算规则是相同的。
-
groupByKey
- 函数签名 def groupByKey(): RDD[(K, Iterable[V])] def groupByKey(numPartitions: Int): RDD[(K, Iterable[V])] def groupByKey(partitioner: Partitioner): RDD[(K, Iterable[V])] - 函数说明 将分区的数据直接转换为相同类型的内存数组进行后续处理。会将数据打乱重组,存在shuffle操作。
Spark中的操作必须落盘处理,不能在内存中等待。
reduceByKey与groupByKey的最主要区别在于:reduceByKey会在分区内对数据进行预聚合(combine),预聚合后会减少进行shuffle操作时与磁盘的IO操作,提高性能。
- 从shuffle的角度:reduceByKey和groupByKey都存在shuffle的操作,但是reduceByKey可以在shuffle前对分区内相同Key的数据进行预聚合(combine)功能,这样会减少落盘的数据量,而groupByKey只是进行分组,不存在数据量减少的问题,reduceByKey性能比较高。
- 从功能的角度:reduceByKey其实包含分组和聚合的功能。groupByKey只能分组,不能聚合,所以在分组聚合的场合下,推荐使用reduceByKey,如果仅仅是分组而不需要聚合,那么还是只能使用groupByKey。
-
aggregateByKey
- 函数签名 def aggregateByKey[U: ClassTag](zeroValue: U)(seqOp: (U, V) => U, combOp: (U, V) => U): RDD[(K, U)] - 函数说明 将数据根据不同的规则进行分区内计算和分区间计算。参数列表中第一个是初始值,因为比较是两两间进行比较,第一个(K,V)进入时没有比较的对象,所以需要一个初始值。最终的返回数据结果应该和zeroValue的类型一致。
-
foldByKey
- 函数签名 def foldByKey(zeroValue: V)(func: (V, V) => V): RDD[(K, V)] - 函数说明 当分区内计算规则和分区间计算规则相同时,aggregateByKey可以简化为foldByKey。
-
combineByKey
- 函数签名 def combineByKey[C](createCombiner: V => C, mergeValue: (C, V) => C, mergeCombiners: (C, C) => C): RDD[(K, C)] - 函数说明 最通用的对Key-Value型的RDD进行聚集操作的聚集函数(aggregation function)。类似于aggregate(),combineByKey()允许用户返回值的类型与输入的不一致。
reduceByKey、foldByKey、aggregateByKey、combineByKey的区别?
reduceByKey:相同Key的第一个数据不进行任何计算,分区内和分区间计算规则相同。
foldByKey:相同Key的第一个数据和初始值进行分区内计算,分区内和分区间计算规则相同。
aggregateByKey:相同Key的第一个数据和初始化进行分区内计算,分区内和分区间计算规则可以不相同。
combineByKey:当计算时,发现数据结构不满足时,可以让第一个数据转换结构。分区内和分区间计算规则不相同。
三个参数:
1.相同Key的第一条数据进行的处理函数
2.表示分区内的处理函数
3.表示分区间的处理函数
reduceByKey:
combineByKeyWithClassTag[V]((v: V) => v, func, func, partitioner)
foldByKey:
combineByKeyWithClassTag[V]((v: V) => cleanedFunc(createZero(), v), cleanedFunc, cleanedFunc, partitioner)
aggregateByKey:
combineByKeyWithClassTag[U]((v: V) => cleanedSeqOp(createZero(), v), cleanedSeqOp, combOp, partitioner)
combineByKey:
combineByKeyWithClassTag(createCombiner, mergeValue, mergeCombiners, partitioner, mapSideCombine, serializer)(null)
-
sortByKey
- 函数签名 def sortByKey(ascending: Boolean = true, numPartitions: Int = self.partitions.length) - 函数说明 在一个(K,V)的RDD上调用,K必须实现Ordered接口(特质),返回一个按照Key进行排序的。
-
join
- 函数签名 def join[W](other: RDD[(K, W)]): RDD[(K, (V, W))] - 函数说明 在类型为(K,V)的(K,W)的RDD上调用,返回一个相同Key对应的所有元素连接在一起的(K,(V,W))的RDD。两个不同数据源的数据,相同的Key的Value会连接在一起,形成元组;两个数据源的数据Key没有匹配上,那么数据不会出现在结果中;两个数据源的数据Key存在多个相同时,会依次匹配,可能会出现笛卡尔乘积,数据量会几何性增长,会导致性能降低。
-
leftOuterJoin
- 函数签名 def leftOuterJoin[W](other: RDD[(K, W)]): RDD[(K, (V, Option[W]))] - 函数说明 类似于SQL语句的左外连接。
-
cogroup
- 函数签名 def cogroup[W](other: RDD[(K, W)]): RDD[(K, (Iterable[V], Iterable[W]))] - 函数说明 在类型为(K,V)和(K,W)的RDD调用,返回一个(K,Iterable<V>,Iterable<W>))类型的RDD。
4. RDD行动算子
-
reduce
- 函数签名 def reduce(f: (T, T) => T): T - 函数说明 聚集RDD中的所有元素,先聚合分区内数据,在聚合分区间数据。
-
collect
- 函数签名 def collect(): Array[T] - 函数说明 在驱动程序中,以数组Array的形式返回数据集的所有元素。会按照数据分区的顺序采集到Driver端的内存中,形成数组。
-
count
- 函数签名 def count(): Long - 函数说明 返回RDD中元素的个数。
-
first
- 函数签名 def first(): T - 函数说明 返回RDD中的第一个元素。
-
take
- 函数签名 def take(num: Int): Array[T] - 函数说明 返回一个由RDD的前n个元素组成的数组。
-
takeOrdered
- 函数签名 def takeOrdered(num: Int)(implicit ord: Ordering[T]): Array[T] - 函数说明 返回该RDD排序后的前n个元素组成的数据。
-
aggregate
- 函数签名 def aggregate[U: ClassTag](zeroValue: U)(seqOp: (U, T) => U, combOp: (U, U) => U): U - 函数说明 分区的数据通过初始值和分区内的数据进行聚合,然后再和初始值进行分区间的数据聚合。
-
fold
- 函数签名 def fold(zeroValue: T)(op: (T, T) => T): T - 函数说明 折叠操作,aggregate的简化操作。也就是说分区内和分区间的计算规则保持一致。
-
countByKey
- 函数签名 def countByKey(): Map[K, Long] - 函数说明 统计每种Key的个数。
-
save相关的算子
- 函数签名 def saveAsTextFile(path: String): Unit def saveAsObjectFile(path: String): Unit def saveAsSequenceFile(path: String, codec: Option[Class[_ <: CompressionCodec]] = None): Unit - 函数说明 将数据保存到不同格式的文件中。
-
foreach
- 函数签名 def foreach(f: T => Unit): Unit = withScope { val cleanF = sc.clean(f) sc.runJob(this, (iter: Itertor[T]) => iter.foreach(cleanF)) } - 函数说明 分布式遍历RDD中的每一个元素,调用指定函数。
5. RDD序列化
1. 闭包检查
从计算的角度,算子以外的代码都是在Driver端执行,算子里面的代码都是在Executor端执行。由于在Scala的函数式编程中,经常会出现算子内使用算子外的数据,这样就形成了闭包的效果,如果使用的算子外的数据无法序列化,就意味着无法传值给Executor端执行,就会发生错误,所以需要在执行任务计算前,检测闭包内的对象是否可以进行序列化,这个操作叫做闭包检测。
2. 序列化方法和属性
算子以外的代码都是在Driver端执行,算子里面的代码都是在Executor端执行。所以对于类中的构造函数,其实在调用时省略了this,也就是经过了类的实例化,所以类要实现特质Serializable。
package com.yankee.spark.core.rdd.serial
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
/**
* @author Yankee
* @date 2021/3/15 21:35
*/
object Spark01_RDD_Serial {
def main(args: Array[String]): Unit = {
System.setProperty("HADOOP_USER_NAME", "hadoop")
// TODO 创建环境
val conf: SparkConf = new SparkConf().setMaster("local[*]").setAppName(this.getClass.getSimpleName.filter(!_.equals('$')))
val sc: SparkContext = new SparkContext(conf)
// TODO 业务逻辑
val rdd: RDD[String] = sc.makeRDD(Array("hello world", "hello spark", "hello hive", "zookeeper"))
val search: Search = new Search("h")
// 需要闭包检测
//search.getMatch1(rdd).collect().foreach(println)
// 需要闭包检测
//search.getMatch2(rdd).collect().foreach(println)
// 不需要闭包检测
search.getMatch3(rdd).collect().foreach(println)
// TODO 关闭环境
sc.stop()
}
// 类的构造参数其实是类的属性,构造参数需要进行闭包检测,其实就等同于类进行闭包检测
class Search(query: String) /*extends Serializable*/ {
def isMatch(s: String): Boolean = {
s.contains(query)
}
// 函数序列化案例
def getMatch1(rdd: RDD[String]): RDD[String] = {
rdd.filter(isMatch)
}
// 属性序列化案例
def getMatch2(rdd: RDD[String]): RDD[String] = {
rdd.filter(x => x.contains(query))
}
// 这样可以不需要闭包检测
def getMatch3(rdd: RDD[String]): RDD[String] = {
val s: String = query
rdd.filter(x => x.contains(s))
}
}
}
3. Kryo序列化框架
Java的序列化能够序列化任何的类。但是比较重(字节多),序列化后,对象的提交也比较大。在大数据领域,如果字节较多会直接影响其在网络中的传输速度,所以Spark出于性能的考虑,Spark2.0开始支持另外一种Kryo序列化机制。Kryo速度是Serializable的10倍。当RDD在shuffle数据时,简单数据类型、数组和字符串类型已经在Spark内部使用kryo来序列化。
package com.yankee.spark.core.rdd.serial
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
/**
* @author Yankee
* @date 2021/3/15 22:06
*/
object Spark02_RDD_Kryo {
def main(args: Array[String]): Unit = {
System.setProperty("HADOOP_USER_NAME", "hadoop")
// TODO 创建环境
val conf: SparkConf = new SparkConf().setMaster("local[*]").setAppName(this.getClass.getSimpleName.filter(!_.equals('$')))
.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
.registerKryoClasses(Array(classOf[Search]))
val sc: SparkContext = new SparkContext(conf)
// TODO 业务逻辑
val rdd: RDD[String] = sc.makeRDD(Array("hello spark", "hello scala", "zookeeper"))
val search: Search = Search("hello")
search.getMatch(rdd).collect().foreach(println)
// TODO 关闭环境
sc.stop()
}
case class Search(query: String) {
def isMatch(s: String): Boolean = {
s.contains(query)
}
def getMatch(rdd: RDD[String]): RDD[String] = {
rdd.filter(isMatch)
}
def getMatch2(rdd: RDD[String]): RDD[String] = {
rdd.filter(x => x.contains(query))
}
}
}
6. RDD依赖关系
1. RDD血缘关系
RDD只支持粗粒度转换,即在大量记录上执行的单个操作。将创建RDD的一系列Lineage(血统)记录下来,以便恢复丢失的分区。RDD的Lineage会记录RDD的元数据信息和转换行为,当该RDD的部分分区数据丢失时,它可以根据这些信息来重新运算和恢复丢失的数据分区。
val lines: RDD[String] = sc.textFile("data/words.txt")
println(lines.toDebugString)
println("=====================================")
val flatMapRDD: RDD[String] = lines.flatMap(_.split(" "))
println(flatMapRDD.toDebugString)
println("=====================================")
val mapRDD: RDD[(String, Int)] = flatMapRDD.map((_, 1))
println(mapRDD.toDebugString)
println("=====================================")
val reduceRDD: RDD[(String, Int)] = mapRDD.reduceByKey(_ + _)
println(reduceRDD.toDebugString)
println("=====================================")
reduceRDD.collect().foreach(println)
# 其中(2)表示为分区个数
(2) data/words.txt MapPartitionsRDD[1] at textFile at Spark01_RDD_Depend.scala:19 []
| data/words.txt HadoopRDD[0] at textFile at Spark01_RDD_Depend.scala:19 []
=====================================
(2) MapPartitionsRDD[2] at flatMap at Spark01_RDD_Depend.scala:23 []
| data/words.txt MapPartitionsRDD[1] at textFile at Spark01_RDD_Depend.scala:19 []
| data/words.txt HadoopRDD[0] at textFile at Spark01_RDD_Depend.scala:19 []
=====================================
(2) MapPartitionsRDD[3] at map at Spark01_RDD_Depend.scala:26 []
| MapPartitionsRDD[2] at flatMap at Spark01_RDD_Depend.scala:23 []
| data/words.txt MapPartitionsRDD[1] at textFile at Spark01_RDD_Depend.scala:19 []
| data/words.txt HadoopRDD[0] at textFile at Spark01_RDD_Depend.scala:19 []
=====================================
(2) ShuffledRDD[4] at reduceByKey at Spark01_RDD_Depend.scala:29 []
+-(2) MapPartitionsRDD[3] at map at Spark01_RDD_Depend.scala:26 []
| MapPartitionsRDD[2] at flatMap at Spark01_RDD_Depend.scala:23 []
| data/words.txt MapPartitionsRDD[1] at textFile at Spark01_RDD_Depend.scala:19 []
| data/words.txt HadoopRDD[0] at textFile at Spark01_RDD_Depend.scala:19 []
2. RDD依赖关系
这里所谓的依赖关系,其实就是两个相邻RDD之间的关系。
val lines: RDD[String] = sc.textFile("data/words.txt")
println(lines.dependencies)
println("=====================================")
val flatMapRDD: RDD[String] = lines.flatMap(_.split(" "))
println(flatMapRDD.dependencies)
println("=====================================")
val mapRDD: RDD[(String, Int)] = flatMapRDD.map((_, 1))
println(mapRDD.dependencies)
println("=====================================")
val reduceRDD: RDD[(String, Int)] = mapRDD.reduceByKey(_ + _)
println(reduceRDD.dependencies)
println("=====================================")
reduceRDD.collect().foreach(println)
3. RDD窄依赖
窄依赖表示每一个父(上游)RDD的Partition最多被子(下游)RDD的一个Partition使用,窄依赖我们形象的比喻为独生子女。
class OneToOneDependency[T](rdd: RDD[T]) extends NarrowDependency[T](rdd)
4. RDD宽依赖
宽依赖表示同一个父(上游)RDD的Partition被多个子(下游)RDD的Partition依赖,会引起Shuffle,宽依赖我们形象的比喻为多生。
class ShuffleDependency[K: ClassTag, V: ClassTag, C: ClassTag](
@transient private val _rdd: RDD[_ <: Product2[K, V]],
val partitioner: Partitioner,
val serializer: Serializer = SparkEnv.get.serializer,
val keyOrdering: Option[Ordering[K]] = None,
val aggregator: Option[Aggregator[K, V, C]] = None,
val mapSideCombine: Boolean = false,
val shuffleWriterProcessor: ShuffleWriteProcessor = new ShuffleWriteProcessor)
extends Dependency[Product2[K, V]]
5. RDD阶段划分
DAG(Directed Acyclic Graph)有向无环图是由点和线组成的拓扑图形,该图形具有方向,不会闭环。
6. RDD阶段划分源码
private[scheduler] def handleJobSubmitted(jobId: Int,
finalRDD: RDD[_],
func: (TaskContext, Iterator[_]) => _,
partitions: Array[Int],
callSite: CallSite,
listener: JobListener,
properties: Properties): Unit = {
var finalStage: ResultStage = null
try {
// New stage creation may throw an exception if, for example, jobs are run on a
// HadoopRDD whose underlying HDFS files have been deleted.
finalStage = createResultStage(finalRDD, func, partitions, jobId, callSite)
} catch {
case e: BarrierJobSlotsNumberCheckFailed =>
// If jobId doesn't exist in the map, Scala coverts its value null to 0: Int automatically.
val numCheckFailures = barrierJobIdToNumTasksCheckFailures.compute(jobId,
(_: Int, value: Int) => value + 1)
logWarning(s"Barrier stage in job $jobId requires ${e.requiredConcurrentTasks} slots, " +
s"but only ${e.maxConcurrentTasks} are available. " +
s"Will retry up to ${maxFailureNumTasksCheck - numCheckFailures + 1} more times")
if (numCheckFailures <= maxFailureNumTasksCheck) {
messageScheduler.schedule(
new Runnable {
override def run(): Unit = eventProcessLoop.post(JobSubmitted(jobId, finalRDD, func,
partitions, callSite, listener, properties))
},
timeIntervalNumTasksCheck,
TimeUnit.SECONDS
)
return
} else {
// Job failed, clear internal data.
barrierJobIdToNumTasksCheckFailures.remove(jobId)
listener.jobFailed(e)
return
}
case e: Exception =>
logWarning("Creating new stage failed due to exception - job: " + jobId, e)
listener.jobFailed(e)
return
}
// Job submitted, clear internal data.
barrierJobIdToNumTasksCheckFailures.remove(jobId)
val job = new ActiveJob(jobId, finalStage, callSite, listener, properties)
clearCacheLocs()
logInfo("Got job %s (%s) with %d output partitions".format(
job.jobId, callSite.shortForm, partitions.length))
logInfo("Final stage: " + finalStage + " (" + finalStage.name + ")")
logInfo("Parents of final stage: " + finalStage.parents)
logInfo("Missing parents: " + getMissingParentStages(finalStage))
val jobSubmissionTime = clock.getTimeMillis()
jobIdToActiveJob(jobId) = job
activeJobs += job
finalStage.setActiveJob(job)
val stageIds = jobIdToStageIds(jobId).toArray
val stageInfos = stageIds.flatMap(id => stageIdToStage.get(id).map(_.latestInfo))
listenerBus.post(
SparkListenerJobStart(job.jobId, jobSubmissionTime, stageInfos, properties))
submitStage(finalStage)
}
/**
* Create a ResultStage associated with the provided jobId.
*/
private def createResultStage(
rdd: RDD[_],
func: (TaskContext, Iterator[_]) => _,
partitions: Array[Int],
jobId: Int,
callSite: CallSite): ResultStage = {
checkBarrierStageWithDynamicAllocation(rdd)
checkBarrierStageWithNumSlots(rdd)
checkBarrierStageWithRDDChainPattern(rdd, partitions.toSet.size)
val parents = getOrCreateParentStages(rdd, jobId)
val id = nextStageId.getAndIncrement()
val stage = new ResultStage(id, rdd, func, partitions, parents, jobId, callSite)
stageIdToStage(id) = stage
updateJobIdStageIdMaps(jobId, stage)
stage
}
/**
* Returns shuffle dependencies that are immediate parents of the given RDD.
*
* This function will not return more distant ancestors. For example, if C has a shuffle
* dependency on B which has a shuffle dependency on A:
*
* A <-- B <-- C
*
* calling this function with rdd C will only return the B <-- C dependency.
*
* This function is scheduler-visible for the purpose of unit testing.
*/
private[scheduler] def getShuffleDependencies(
rdd: RDD[_]): HashSet[ShuffleDependency[_, _, _]] = {
val parents = new HashSet[ShuffleDependency[_, _, _]]
val visited = new HashSet[RDD[_]]
val waitingForVisit = new ListBuffer[RDD[_]]
waitingForVisit += rdd
while (waitingForVisit.nonEmpty) {
val toVisit = waitingForVisit.remove(0)
if (!visited(toVisit)) {
visited += toVisit
toVisit.dependencies.foreach {
case shuffleDep: ShuffleDependency[_, _, _] =>
parents += shuffleDep
case dependency =>
waitingForVisit.prepend(dependency.rdd)
}
}
}
parents
}
7. RDD任务划分
RDD任务切分中间分为:Application、Job、Stage和Task
- Application:初始化一个SparkContext即生成一个Application
- Job:一个Action算子就会生成一个Job
- Stage:Stage等于宽依赖(ShuffleDependency)的个数加1
- Task:一个Stage阶段中,最后一个RDD的分区个数就是Task的个数
# 都是1->n的关系
Application -> Job -> Stage -> Task
8. RDD任务划分源码
private[scheduler] def handleJobSubmitted(jobId: Int,
finalRDD: RDD[_],
func: (TaskContext, Iterator[_]) => _,
partitions: Array[Int],
callSite: CallSite,
listener: JobListener,
properties: Properties): Unit = {
var finalStage: ResultStage = null
try {
// New stage creation may throw an exception if, for example, jobs are run on a
// HadoopRDD whose underlying HDFS files have been deleted.
finalStage = createResultStage(finalRDD, func, partitions, jobId, callSite)
} catch {
case e: BarrierJobSlotsNumberCheckFailed =>
// If jobId doesn't exist in the map, Scala coverts its value null to 0: Int automatically.
val numCheckFailures = barrierJobIdToNumTasksCheckFailures.compute(jobId,
(_: Int, value: Int) => value + 1)
logWarning(s"Barrier stage in job $jobId requires ${e.requiredConcurrentTasks} slots, " +
s"but only ${e.maxConcurrentTasks} are available. " +
s"Will retry up to ${maxFailureNumTasksCheck - numCheckFailures + 1} more times")
if (numCheckFailures <= maxFailureNumTasksCheck) {
messageScheduler.schedule(
new Runnable {
override def run(): Unit = eventProcessLoop.post(JobSubmitted(jobId, finalRDD, func,
partitions, callSite, listener, properties))
},
timeIntervalNumTasksCheck,
TimeUnit.SECONDS
)
return
} else {
// Job failed, clear internal data.
barrierJobIdToNumTasksCheckFailures.remove(jobId)
listener.jobFailed(e)
return
}
case e: Exception =>
logWarning("Creating new stage failed due to exception - job: " + jobId, e)
listener.jobFailed(e)
return
}
// Job submitted, clear internal data.
barrierJobIdToNumTasksCheckFailures.remove(jobId)
val job = new ActiveJob(jobId, finalStage, callSite, listener, properties)
clearCacheLocs()
logInfo("Got job %s (%s) with %d output partitions".format(
job.jobId, callSite.shortForm, partitions.length))
logInfo("Final stage: " + finalStage + " (" + finalStage.name + ")")
logInfo("Parents of final stage: " + finalStage.parents)
logInfo("Missing parents: " + getMissingParentStages(finalStage))
val jobSubmissionTime = clock.getTimeMillis()
jobIdToActiveJob(jobId) = job
activeJobs += job
finalStage.setActiveJob(job)
val stageIds = jobIdToStageIds(jobId).toArray
val stageInfos = stageIds.flatMap(id => stageIdToStage.get(id).map(_.latestInfo))
listenerBus.post(
SparkListenerJobStart(job.jobId, jobSubmissionTime, stageInfos, properties))
submitStage(finalStage)
}
/** Submits stage, but first recursively submits any missing parents. */
private def submitStage(stage: Stage): Unit = {
val jobId = activeJobForStage(stage)
if (jobId.isDefined) {
logDebug(s"submitStage($stage (name=${stage.name};" +
s"jobs=${stage.jobIds.toSeq.sorted.mkString(",")}))")
if (!waitingStages(stage) && !runningStages(stage) && !failedStages(stage)) {
val missing = getMissingParentStages(stage).sortBy(_.id)
logDebug("missing: " + missing)
if (missing.isEmpty) {
logInfo("Submitting " + stage + " (" + stage.rdd + "), which has no missing parents")
submitMissingTasks(stage, jobId.get)
} else {
for (parent <- missing) {
submitStage(parent)
}
waitingStages += stage
}
}
} else {
abortStage(stage, "No active job for stage " + stage.id, None)
}
}
val tasks: Seq[Task[_]] = try {
val serializedTaskMetrics = closureSerializer.serialize(stage.latestInfo.taskMetrics).array()
stage match {
case stage: ShuffleMapStage =>
stage.pendingPartitions.clear()
partitionsToCompute.map { id =>
val locs = taskIdToLocations(id)
val part = partitions(id)
stage.pendingPartitions += id
new ShuffleMapTask(stage.id, stage.latestInfo.attemptNumber,
taskBinary, part, locs, properties, serializedTaskMetrics, Option(jobId),
Option(sc.applicationId), sc.applicationAttemptId, stage.rdd.isBarrier())
}
case stage: ResultStage =>
partitionsToCompute.map { id =>
val p: Int = stage.partitions(id)
val part = partitions(p)
val locs = taskIdToLocations(id)
new ResultTask(stage.id, stage.latestInfo.attemptNumber,
taskBinary, part, locs, id, properties, serializedTaskMetrics,
Option(jobId), Option(sc.applicationId), sc.applicationAttemptId,
stage.rdd.isBarrier())
}
}
} catch {
case NonFatal(e) =>
abortStage(stage, s"Task creation failed: $e\n${Utils.exceptionString(e)}", Some(e))
runningStages -= stage
return
}
/**
* Returns the sequence of partition ids that are missing (i.e. needs to be computed).
*
* This can only be called when there is an active job.
*/
override def findMissingPartitions(): Seq[Int] = {
val job = activeJob.get
(0 until job.numPartitions).filter(id => !job.finished(id))
}
7. RDD的持久化
1. RDD Cache缓存
RDD通过Cache或者Persist方法将前面的计算结果缓存,默认情况下会把数据以缓存在JVM的堆内存中。但是并不是这两个方法被调用时立即缓存,而是触发后面的action算子时,该RDD将会被缓存在计算节点的内存中,并供后面重用。
// cache操作会增加血缘关系,不改变原有的血缘关系
println(mapRDD.toDebugString)
// 数据缓存
mapRDD.cache()
// 可以更改存储级别,存储到磁盘中时,当执行成功后会删除
mapRDD.persist(StorageLevel.DISK_ONLY)
存储级别
/**
* Various [[org.apache.spark.storage.StorageLevel]] defined and utility functions for creating
* new storage levels.
*/
object StorageLevel {
val NONE = new StorageLevel(false, false, false, false)
val DISK_ONLY = new StorageLevel(true, false, false, false)
val DISK_ONLY_2 = new StorageLevel(true, false, false, false, 2)
val MEMORY_ONLY = new StorageLevel(false, true, false, true)
val MEMORY_ONLY_2 = new StorageLevel(false, true, false, true, 2)
val MEMORY_ONLY_SER = new StorageLevel(false, true, false, false)
val MEMORY_ONLY_SER_2 = new StorageLevel(false, true, false, false, 2)
val MEMORY_AND_DISK = new StorageLevel(true, true, false, true)
val MEMORY_AND_DISK_2 = new StorageLevel(true, true, false, true, 2)
val MEMORY_AND_DISK_SER = new StorageLevel(true, true, false, false)
val MEMORY_AND_DISK_SER_2 = new StorageLevel(true, true, false, false, 2)
val OFF_HEAP = new StorageLevel(true, true, true, false, 1)
/**
* :: DeveloperApi ::
* Return the StorageLevel object with the specified name.
*/
@DeveloperApi
def fromString(s: String): StorageLevel = s match {
case "NONE" => NONE
case "DISK_ONLY" => DISK_ONLY
case "DISK_ONLY_2" => DISK_ONLY_2
case "MEMORY_ONLY" => MEMORY_ONLY
case "MEMORY_ONLY_2" => MEMORY_ONLY_2
case "MEMORY_ONLY_SER" => MEMORY_ONLY_SER
case "MEMORY_ONLY_SER_2" => MEMORY_ONLY_SER_2
case "MEMORY_AND_DISK" => MEMORY_AND_DISK
case "MEMORY_AND_DISK_2" => MEMORY_AND_DISK_2
case "MEMORY_AND_DISK_SER" => MEMORY_AND_DISK_SER
case "MEMORY_AND_DISK_SER_2" => MEMORY_AND_DISK_SER_2
case "OFF_HEAP" => OFF_HEAP
......
缓存有可能丢失,或者存储于内存的数据由于内存不足而被删除,RDD的缓存容错机制保证了及时缓存丢失也能保证计算的正确执行。通过基于RDD的一系列转换,丢失的数据会被重算,由于RDD的各个Partition是相对独立的,因此只需要计算丢失的部分即可,并不需要重算全部Partition。
Spark会自动对一些Shuffle操作的中间数据做持久化操作。这样做的目的是为了当一个节点Shuffle失败了避免重新计算整个输入。但是,在实际使用的时候,如果想重用数据,仍然建议调用persist或cache。
2. RDD CheckPoint检查点
所谓的检查点其实就是通过将RDD中间结果写入磁盘,由于血缘依赖过长会造成容错成本过高,所以在中间阶段设置检查点,如果检查点之后的节点出现了问题,可以冲检查点开始重做血缘,减少了开销。对RDD进行checkpoint操作并不会马上被执行,必须执行action操作才能触发。
sc.setCheckpointDir("checkpoint")
// TODO 业务逻辑
val list: List[String] = List("hello scala", "hello spark")
val rdd: RDD[String] = sc.makeRDD(list, 2)
val flatMapRDD: RDD[String] = rdd.flatMap(_.split(" "))
val mapRDD: RDD[(String, Int)] = flatMapRDD.map(word => {
println("@@@@@@@@@@@@@")
(word, 1)
})
// 增加缓存,避免再重新跑一个Job做checkpoint
mapRDD.cache()
// 数据检查点:针对mapRDD做检查点计算
mapRDD.checkpoint()
val reduceRDD: RDD[(String, Int)] = mapRDD.reduceByKey(_ + _)
val groupRDD: RDD[(String, Iterable[Int])] = mapRDD.groupByKey()
reduceRDD.collect().foreach(println)
3. 缓存和检查点区别
- Cache缓存只是将数据保存起来,不切断血缘依赖,但是会在血缘关系中添加新的依赖,一旦出现问题可以从头读取数据。CheckPoint检查点切断血缘依赖,重新建立新的血缘关系。
- Cache缓存的数据通过存储在磁盘、内存等地方,可靠性低。CheckPoint的数据通常存储在HDFS等容错、高可用的文件系统,可靠性高。
- 建议对checkpoint()的RDD使用Cache缓存,这样checkpoint的job只需从Cache缓存中读取数据即可,否则需要再从头计算一次RDD。
8. RDD分区器
Spark目前支持Hash分区和Range分区,和用户自定义分区。Hash分区为当前的默认分区。分区器直接决定了RDD中分区的个数、RDD中每条数据经过Shuffle后进入哪个分区,进而决定了Reduce的个数。
- 只有Key-Value类型的RDD才有分区器,非Key-Value类型的RDD分区的值是None
- 每个RDD的分区ID范围:0~(numPartitions-1),决定这个值是属于那个分区的
1. Hash分区器
对于给定的Key,计算其hashCode并除以分区个数取余。
class HashPartitioner(partitions: Int) extends Partitioner {
require(partitions >= 0, s"Number of partitions ($partitions) cannot be negative.")
def numPartitions: Int = partitions
def getPartition(key: Any): Int = key match {
case null => 0
case _ => Utils.nonNegativeMod(key.hashCode, numPartitions)
}
override def equals(other: Any): Boolean = other match {
case h: HashPartitioner =>
h.numPartitions == numPartitions
case _ =>
false
}
override def hashCode: Int = numPartitions
}
2. Range分区器
将一定范围内的数据映射到一个分区中,尽量保证每个分区数据均匀,而且分区间有序。
class RangePartitioner[K : Ordering : ClassTag, V](
partitions: Int,
rdd: RDD[_ <: Product2[K, V]],
private var ascending: Boolean = true,
val samplePointsPerPartitionHint: Int = 20)
extends Partitioner {
// A constructor declared in order to maintain backward compatibility for Java, when we add the
// 4th constructor parameter samplePointsPerPartitionHint. See SPARK-22160.
// This is added to make sure from a bytecode point of view, there is still a 3-arg ctor.
def this(partitions: Int, rdd: RDD[_ <: Product2[K, V]], ascending: Boolean) = {
this(partitions, rdd, ascending, samplePointsPerPartitionHint = 20)
}
// We allow partitions = 0, which happens when sorting an empty RDD under the default settings.
require(partitions >= 0, s"Number of partitions cannot be negative but found $partitions.")
require(samplePointsPerPartitionHint > 0,
s"Sample points per partition must be greater than 0 but found $samplePointsPerPartitionHint")
private var ordering = implicitly[Ordering[K]]
// An array of upper bounds for the first (partitions - 1) partitions
private var rangeBounds: Array[K] = {
if (partitions <= 1) {
Array.empty
} else {
// This is the sample size we need to have roughly balanced output partitions, capped at 1M.
// Cast to double to avoid overflowing ints or longs
val sampleSize = math.min(samplePointsPerPartitionHint.toDouble * partitions, 1e6)
// Assume the input partitions are roughly balanced and over-sample a little bit.
val sampleSizePerPartition = math.ceil(3.0 * sampleSize / rdd.partitions.length).toInt
val (numItems, sketched) = RangePartitioner.sketch(rdd.map(_._1), sampleSizePerPartition)
if (numItems == 0L) {
Array.empty
} else {
// If a partition contains much more than the average number of items, we re-sample from it
// to ensure that enough items are collected from that partition.
val fraction = math.min(sampleSize / math.max(numItems, 1L), 1.0)
val candidates = ArrayBuffer.empty[(K, Float)]
val imbalancedPartitions = mutable.Set.empty[Int]
sketched.foreach { case (idx, n, sample) =>
if (fraction * n > sampleSizePerPartition) {
imbalancedPartitions += idx
} else {
// The weight is 1 over the sampling probability.
val weight = (n.toDouble / sample.length).toFloat
for (key <- sample) {
candidates += ((key, weight))
}
}
}
if (imbalancedPartitions.nonEmpty) {
// Re-sample imbalanced partitions with the desired sampling probability.
val imbalanced = new PartitionPruningRDD(rdd.map(_._1), imbalancedPartitions.contains)
val seed = byteswap32(-rdd.id - 1)
val reSampled = imbalanced.sample(withReplacement = false, fraction, seed).collect()
val weight = (1.0 / fraction).toFloat
candidates ++= reSampled.map(x => (x, weight))
}
RangePartitioner.determineBounds(candidates, math.min(partitions, candidates.size))
}
}
}
def numPartitions: Int = rangeBounds.length + 1
private var binarySearch: ((Array[K], K) => Int) = CollectionsUtils.makeBinarySearch[K]
def getPartition(key: Any): Int = {
val k = key.asInstanceOf[K]
var partition = 0
if (rangeBounds.length <= 128) {
// If we have less than 128 partitions naive search
while (partition < rangeBounds.length && ordering.gt(k, rangeBounds(partition))) {
partition += 1
}
} else {
// Determine which binary search method to use only once.
partition = binarySearch(rangeBounds, k)
// binarySearch either returns the match location or -[insertion point]-1
if (partition < 0) {
partition = -partition-1
}
if (partition > rangeBounds.length) {
partition = rangeBounds.length
}
}
if (ascending) {
partition
} else {
rangeBounds.length - partition
}
}
override def equals(other: Any): Boolean = other match {
case r: RangePartitioner[_, _] =>
r.rangeBounds.sameElements(rangeBounds) && r.ascending == ascending
case _ =>
false
}
override def hashCode(): Int = {
val prime = 31
var result = 1
var i = 0
while (i < rangeBounds.length) {
result = prime * result + rangeBounds(i).hashCode
i += 1
}
result = prime * result + ascending.hashCode
result
}
@throws(classOf[IOException])
private def writeObject(out: ObjectOutputStream): Unit = Utils.tryOrIOException {
val sfactory = SparkEnv.get.serializer
sfactory match {
case js: JavaSerializer => out.defaultWriteObject()
case _ =>
out.writeBoolean(ascending)
out.writeObject(ordering)
out.writeObject(binarySearch)
val ser = sfactory.newInstance()
Utils.serializeViaNestedStream(out, ser) { stream =>
stream.writeObject(scala.reflect.classTag[Array[K]])
stream.writeObject(rangeBounds)
}
}
}
@throws(classOf[IOException])
private def readObject(in: ObjectInputStream): Unit = Utils.tryOrIOException {
val sfactory = SparkEnv.get.serializer
sfactory match {
case js: JavaSerializer => in.defaultReadObject()
case _ =>
ascending = in.readBoolean()
ordering = in.readObject().asInstanceOf[Ordering[K]]
binarySearch = in.readObject().asInstanceOf[(Array[K], K) => Int]
val ser = sfactory.newInstance()
Utils.deserializeViaNestedStream(in, ser) { ds =>
implicit val classTag = ds.readObject[ClassTag[Array[K]]]()
rangeBounds = ds.readObject[Array[K]]()
}
}
}
}
3. 自定义分区器
/**
* 自定义分区器
*/
class MyPartitioner extends Partitioner {
// 分区数量
override def numPartitions: Int = 3
// 根据数据的Key值返回数据的分区索引(从0开始)
override def getPartition(key: Any): Int = {
//if (key == "NBA") {
// 0
//} else if (key == "CBA") {
// 1
//} else {
// 2
//}
key match {
case "NBA" => 0
case "CBA" => 1
case _ => 2
}
}
}
9. RDD文件读取与保存
Spark的数据读取及数据保存可以从两个维度来作区分:文件格式以及文件系统。
文件格式分为:text文件、csv文件、sequence文件以及Object文件;
文件系统分为:本地文件系统、HDFS、HBASE以及数据库。
1. text文件
// 保存成text文件
rdd.saveAsTextFile("output1")
// 读取text文件
rdd.textFile("output1")
2. object对象文件
对象文件是将对象序列化后保存的文件,采用Java的序列化机制。可以通过objectFile[T: ClassTag](path)函数接收一个路径,读取对象文件,返回对应的RDD,也可以通过调用saveAsObjectFile()实现对象文件的输出。因为是序列化所以要指定类型。
// 保存成object文件
rdd.saveAsObjectFile("output2")
// 读取object文件
sc.objectFile[(String, Int)]("output2")
3. sequence文件
Sequence文件是Hadoop用来存储二进制形式的key-value对而设计的一种平面文件(Flat File)。在SparkContext中,可以调用sequenceFile[keyClass, valueClass](path)。
// 保存成sequence文件
rdd.saveAsSequenceFile("output3")
// 读取sequence文件
sc.sequenceFile[String, Int]("output3")