leetcode74. 搜索二维矩阵

编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值。该矩阵具有如下特性:

每行中的整数从左到右按升序排列。
每行的第一个整数大于前一行的最后一个整数。

示例 1:
输入:
matrix = [
[1, 3, 5, 7],
[10, 11, 16, 20],
[23, 30, 34, 50]
]
target = 3
输出: true

示例 2:
输入:
matrix = [
[1, 3, 5, 7],
[10, 11, 16, 20],
[23, 30, 34, 50]
]
target = 13
输出: false

思路:这个题最初的想法也许是遍历二维数组来寻找这个target,但是时间复杂度太大,不建议这么干,我们其实可以这么做,从二维数组的右上角这个元素开始和target比较大小,如果比target大,说明要寻找的target值应该在这个数的左边,而不是下面了(下面的数都比这个数大,那肯定也比target大),然后列索引进行减1,反之如果这个数比target小,那说明要寻找的target值应该在这个数的下面,然后行索引需要加1,如果是等于的话就直接找到了,这里需要对变化之后的行索引和列索引进行判断,如果超出数组范围就直接退出循环返回false了。

class Solution {
public:
    bool searchMatrix(vector<vector<int>>& matrix, int target) {
        if(matrix.empty())
            return false;
        int row = matrix.size();
        int col = matrix[0].size();
        int i=0,j=col-1;
        while(1)
        {
            if(i==row || j<0)
                break;
            if(matrix[i][j] < target)
            {
                i++;
                continue;
            }
            else if(matrix[i][j] > target)
            {
                j--;
                continue;
            }
            else
                return true;
        }
        return false;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值