编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值。该矩阵具有如下特性:
每行中的整数从左到右按升序排列。
每行的第一个整数大于前一行的最后一个整数。
示例 1:
输入:
matrix = [
[1, 3, 5, 7],
[10, 11, 16, 20],
[23, 30, 34, 50]
]
target = 3
输出: true
示例 2:
输入:
matrix = [
[1, 3, 5, 7],
[10, 11, 16, 20],
[23, 30, 34, 50]
]
target = 13
输出: false
思路:这个题最初的想法也许是遍历二维数组来寻找这个target,但是时间复杂度太大,不建议这么干,我们其实可以这么做,从二维数组的右上角这个元素开始和target比较大小,如果比target大,说明要寻找的target值应该在这个数的左边,而不是下面了(下面的数都比这个数大,那肯定也比target大),然后列索引进行减1,反之如果这个数比target小,那说明要寻找的target值应该在这个数的下面,然后行索引需要加1,如果是等于的话就直接找到了,这里需要对变化之后的行索引和列索引进行判断,如果超出数组范围就直接退出循环返回false了。
class Solution {
public:
bool searchMatrix(vector<vector<int>>& matrix, int target) {
if(matrix.empty())
return false;
int row = matrix.size();
int col = matrix[0].size();
int i=0,j=col-1;
while(1)
{
if(i==row || j<0)
break;
if(matrix[i][j] < target)
{
i++;
continue;
}
else if(matrix[i][j] > target)
{
j--;
continue;
}
else
return true;
}
return false;
}
};