python基础-numpy

本文解释了numpy中shape(1,x)与(x,)的区别,指出它们分别表示一维和二维数组,并介绍了ndim属性、array.size、axis操作以及reshape函数的用法,包括生成数组的不同维度展示和数组重构。
摘要由CSDN通过智能技术生成
numpy中shape (1,X) 和 (X,)的区别 参考

首先放结论:shape(x,)是一维数组,ndim=1,[1,2,3,…x] ;shape(1,x)是二维?数组,ndim=2,[[1,2,3,…n]]

>>> import numpy as np 
>>> a=np.random.randn(1,2) 
>>> a
array([[-0.73863698, -0.38593182]])
>>> b=np.random.randn(2,) 
>>> b
array([-1.09272969,  0.70553097])
>>> a.shape
(1, 2)
>>> a.ndim
2
>>> b.shape
(2,)
>>> b.ndim
1

nidm属性 秩=维度/数=轴的数量,一维数组ndim=1,二维数组ndim=2
shape属性返回一个元组,元组的长度=ndim,二维数组的shape=(行数,列数),一维数组shape=(列数,)PS:因为一维数组ndim=1嘛,所以会这样表示!
array.size属性,数组元素的总个数,相当于 .shape 中 n*m 的值
axis=0,表示沿着第 0 轴进行操作,即对每一列进行操作
axis=1,表示沿着第1轴进行操作,即对每一行进行操作。
请添加图片描述
请添加图片描述
(先理解这么多,其他的真的理解不了 。。。。11.22)

np.random()

np.random.rand(3,2) #随机生成【3,2】大小的矩阵

 np.random.rand(3,2) #随机生成【32】大小的矩阵
array([[0.98766853, 0.09140474],
       [0.85365579, 0.71327129],
       [0.22873142, 0.05369397]])

np.random.randint(10,size=5) #随机生成(0-10)的int整形,大小=5

>>> np.random.randint(10,size=5) #随机生成[0-10)int整形,大小=5
array([3, 2, 2, 9, 7])

np.random.randint(0,5,(2,2))#随机生成[0,5)的int整形,大小(2*2矩阵)

>>> b=np.random.randint(0,5,(2,2))
>>> b
array([[4, 0],
       [3, 3]])
np.arange() 借鉴
  1. 一个参数时,参数值为终点,起点取默认值0,步长取默认值1
>>> np.arange(5) 
array([0, 1, 2, 3, 4])
  1. 两个参数时,第一个参数为起点,第二个参数为终点,步长取默认值1。包前不包后
>>> np.arange(5,10)
array([5, 6, 7, 8, 9])
  1. 三个参数时,第一个参数为起点,第二个参数为终点,第三个参数为步长;步长支持小数。
>>> np.arange(5,10,2) 
array([5, 7, 9])

参考
稍微一看,shape为(x,)和shape为(x,1)几乎一样,都是一维的形式。其实不然:

(x,)意思是一维数组,数组中有x个元素
(x,1)意思是一个x维数组,每行有1个元素

reshape() 参考

numpy中reshape函数的三种常见相关用法
1、numpy.arange(n).reshape(a, b) 依次生成n个自然数,并且以a行b列的数组形式显示

np.arange(16).reshape(2,8) #生成16个自然数,以28列的形式显示
# Out: 
# array([[ 0,  1,  2,  3,  4,  5,  6,  7],
#       [ 8,  9, 10, 11, 12, 13, 14, 15]])

2、mat (or array).reshape(c, -1) 必须是矩阵格式或者数组格式,才能使用 .reshape(c, -1) 函数, 表示将此矩阵或者数组重组,以 c行d列的形式表示

arr.shape    # (a,b)
arr.reshape(m,-1) #改变维度为m行、d列 (-1表示列数自动计算,d= a*b /m )
arr.reshape(-1,m) #改变维度为d行、m列 (-1表示行数自动计算,d= a*b /m )

-1的作用: 自动计算d:d=数组或者矩阵里面所有的元素个数/c, d必须是整数,不然报错)
(reshape(-1, m)即列数固定,行数需要计算)
3、

  • numpy.arange(a,b,c) 从 数字a起, 步长为c, 到b结束,生成array 【a,b)
  • numpy.arange(a,b,c).reshape(m,n) :将array的维度变为m 行 n列。
>>> np.arange(1,11,2)              
array([1, 3, 5, 7, 9])
>>> np.arange(1,12,2).reshape(2,-1) 
array([[ 1,  3,  5],
       [ 7,  9, 11]])

参考:

array([[1, 2, 3],
       [4, 5, 6]])
>>> c=c.reshape(3,2) 
>>> c
array([[1, 2],
       [3, 4],
       [5, 6]])
>>> c=c.reshape(-1,6) 
>>> c
array([[1, 2, 3, 4, 5, 6]])
>>> c=c.reshape(6,-1) 
>>> c
array([[1],
       [2],
       [3],
       [4],
       [5],
       [6]])
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值