人工智能与用户画像
一、前言
本文初衷是想尽可能简单的介绍一下深度学习/机器学习训练的基本过程,然后以此为基点解剖分析用户画像技术。
尽管深度学习是一个比较复杂难懂的技术,但复杂的部分主要在于神经网络或者各类算法,对于其大概的框架,以及期间向量的流动还是很简单的。因此想尽可能简单的做一个科普介绍,但是写的过程中发现所涉及的点太多,写着写着就感觉写的比较啰嗦。希望有兴趣的人读完吧。
tip:本文资料来源于网络。如文中存在技术问题,欢迎指出。
二、人工智能
人工智能的研究领域十分丰富,其中包括计算机视觉、自然语言处理、推荐系统等。我们在电影中看到的人工智能多半在描述强人工智能,而这部分目前来说还是难以实现。目前人工智能的工作集中在弱人工智能部分,只需要让机器具备一定的感知和观察能力,并做到一定程度的理解和推理。弱人工智能目前取得如此突破,这主要归功于一种实现人工智能的方法——机器学习。
本部分意在说明深度学习和机器学习的基本原理,以便读者能够从技术方面正确看待深度学习和机器学习任务。
1.机器学习——一种实现人工智能的方法
机器学习最基本的做法,是使用算法来解析数据、从中学习,然后对真实世界中的事件做出决策和预测。与传统的为解决特定任务、硬编码的软件程序不同,机器学习是用大量的数据来“训练”,通过各种算法从数据中学习如何完成任务。
机器学习直接来源于早期的人工智能领域,传统的算法包括决策树、聚类、贝叶斯分类、支持向量机、EM、Adaboost等等。从学习方法上来分,机器学习算法可以分为监督学习(如分类问题)、无监督学习(如聚类问题)、半监