人工智能与用户画像

本文介绍了深度学习和机器学习的基本原理,以及它们在用户画像技术中的应用。用户画像通过分析大量用户数据,进行标签分类,以实现精细化运营。深度学习在处理复杂数据时表现出色,但也面临过拟合和欠拟合问题。通过数据集的划分和优化算法,可以提高模型的泛化能力。在用户画像构建过程中,涉及多种技术手段,最终实现输入-处理-输出的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

人工智能与用户画像

一、前言

本文初衷是想尽可能简单的介绍一下深度学习/机器学习训练的基本过程,然后以此为基点解剖分析用户画像技术。

尽管深度学习是一个比较复杂难懂的技术,但复杂的部分主要在于神经网络或者各类算法,对于其大概的框架,以及期间向量的流动还是很简单的。因此想尽可能简单的做一个科普介绍,但是写的过程中发现所涉及的点太多,写着写着就感觉写的比较啰嗦。希望有兴趣的人读完吧。

tip:本文资料来源于网络。如文中存在技术问题,欢迎指出。

二、人工智能

人工智能的研究领域十分丰富,其中包括计算机视觉、自然语言处理、推荐系统等。我们在电影中看到的人工智能多半在描述强人工智能,而这部分目前来说还是难以实现。目前人工智能的工作集中在弱人工智能部分,只需要让机器具备一定的感知和观察能力,并做到一定程度的理解和推理。弱人工智能目前取得如此突破,这主要归功于一种实现人工智能的方法——机器学习。

本部分意在说明深度学习和机器学习的基本原理,以便读者能够从技术方面正确看待深度学习和机器学习任务。

1.机器学习——一种实现人工智能的方法

机器学习最基本的做法,是使用算法来解析数据、从中学习,然后对真实世界中的事件做出决策和预测。与传统的为解决特定任务、硬编码的软件程序不同,机器学习是用大量的数据来“训练”,通过各种算法从数据中学习如何完成任务。

机器学习直接来源于早期的人工智能领域,传统的算法包括决策树、聚类、贝叶斯分类、支持向量机、EM、Adaboost等等。从学习方法上来分,机器学习算法可以分为监督学习(如分类问题)、无监督学习(如聚类问题)、半监

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值