- 博客(45)
- 收藏
- 关注
原创 可解释深度学习:从感受野到深度学习的三大基本任务:图像分类,语义分割,目标检测,让你真正理解深度学习
深度学习一直作为一个“盲盒”被大家诟病,我们可以借助深度学习实现端到端的训练,简单,有效,但是我们并不了解神经网络的中间层到底在做什么,每一层卷积的关注点是什么。我在之前的专题浅谈图像处理与深度学习中提到,我们在深度学习刚开始的时候,我们要实现一个任务,比如:把不清晰的图像变清晰,我们随意的搭建了三层网络,然后开始训练,发现效果比传统的图像处理方法好,而且简单有效,然后我们再随意的搭建四层网络,发现四层网络比三层网络效果还好,我们也许有一种感性的认识:随着网络层的增加,网络的参数的增加,网络能够学...
2022-07-31 17:00:59 5257 71
原创 深度学习入门基础:图像分类网络整理(最全)
目录图像分类Lenet1.简介2.网络结构Alexnet1.简介2.网络结构VGG1.简介2.网络结构3.VGG改进点总结GoogLeNet1.网络简介2.inception的结构3. 1x1卷积核的主要作用4. 几点说明Resnet1.简介2.网络结构DenseNet1.简介2.网络结构EfficientNetEfficientNetV2sufflentV2sufflenet时间轴代码实现训练结果对比图像分类实质上就是从给定的类别集合中为图像分配对应标签的任务。也就是说我们的任务是分析一个输入图像并返回一
2022-06-14 17:17:50 8267 4
原创 深度学习之超分辨率,视频增强基础:光流估计与可变性卷积
在进行视频超分辨率、压缩视频增强等任务的时候,我们通常会把目标帧和参考帧进行帧对齐,而帧对齐分为两种:显式帧对齐(光流估计+运动补偿)、隐式帧对齐(可变性卷积、3D卷积、循环神经网络等,这里只讲可变性卷积)。...
2022-05-11 21:09:16 4345 20
原创 深度学习基础:压缩视频增强调研
从一个比赛说起NTIRE 2021 视频质量增强竞赛 (Challenge on Quality Enhancement of Compressed Video)由瑞士苏黎世联邦理工学院(ETH Zurich)博士研究生 Ren Yang(本人)及导师 Dr. Radu Timofte 主办,为 NTIRE Workshop(CVPR 2021)的竞赛之一。这次比赛为CVPR贡献了数很多优秀的论文,认真分析总结这次比赛优秀的视频增强网络是特别有必要的。 NTIRE 20......
2022-05-10 17:48:24 2926 40
原创 深度学习基础:BN层并不适用所有深度学习任务
BN层基于一个mini-batch的数据计算均值和方差,而不是基于整个训练集来做,相当于在进行梯度计算是引入噪声,因此BN不适用于对噪声敏感的强化学习、生成模型等。
2022-10-31 17:11:35 778 1
原创 深度学习基础:超分辨率网络整理之EDVR网络
超分辨率(super-resolution)、去模糊(deblurring)等视频恢复任务越来越受到计算机视觉界的关注。在NTIRE19挑战赛中发布了一个名为REDS的具有挑战性的基准测试。这个新的基准测试从两个方面挑战了现有的方法:(1)如何在给定大运动的情况下对齐多个帧(2)如何有效地融合不同运动和模糊的不同帧。在这项工作中,我们提出了一种新的视频恢复框架,增强可变形卷积,称为EDVR,以解决这些挑战。首先,。其次,
2022-09-16 00:00:00 2723 8
原创 Pytorch从入门到实践:dim维度的使用(终极版)
pytorch中对tensor的很多操作都涉及到dim(维度的设置),但是,我们总是搞不清楚每个维度代表什么,到底设置几维,比如sum(求和)、softmax、max(最大值)。ptorch中的dim类似于numpy纵的axis,这一次我们完全弄懂dim的使用。
2022-09-07 10:05:17 1396 40
原创 python从入门到实践:项目1-ATM取款机(完整代码)
通过上图,我们可以看到,一个完整的项目,基本包括三个部分:用户视图层、接口层、数据处理层,其中,用户视图层是用来接收用户的数据输入的,比如:有户名,密码;接口层是要接收用户视图层传来的数据,然后做判断:名字是否存在、密码是否正确,这就要求接口层调用数据处理层的方法;数据处理层就需要接收接口层的参数,把接口层需要的增、删、改、查的数据结果返回给接口层,接口层再把判断的结果返回给用户层。
2022-09-04 19:12:18 4352 27
原创 python从入门到实践:数据类型、文件处理
目录一、数据类型1.数字整型与浮点型其他数字类型2.字符串3.字节串4.列表5.元祖6.集合7.字典8.可变类型与不可变类型数字类型字符串列表元祖字典9.数据类型总结二、文件处理1.文件的引入2.文件的基本操作流程2.1基本流程2.2资源回收与with上下文管理2.3指定操作文本文件的字符编码3.文件的操作模式3.1控制文件读写操作的模式3.2控制文件读写内容的模式4.操作文件的方法4.1重点掌握4.2了解5.主动控制文件内指针移动5.1案例一:0模式5.2案例二:1模式5.3案例三:2模式6.文件的修改6
2022-09-01 20:00:48 1184 16
原创 python从入门到实践:python常用模块
全网最的常用的python模块:os,sys,shutil,jaon,pickle,shelve,configparser,hashlib,suprocess,logging,re
2022-08-31 21:31:14 8311 13
原创 python从入门到实践:软件开发目录规范
为了提高程序的可读性与可维护性,我们应该为软件设计良好的目录结构,这与规范的编码风格同等重要。软件的目录规范并无硬性标准,只要清晰可读即可,假设你的软件名为QQ,那么推荐的目录结构是...
2022-08-31 16:01:38 527 4
原创 Python从入门到实践:字节串与字符串
bytes 只负责以字节序列的形式(二进制形式)来存储数据,至于这些数据到底表示什么内容(字符串、数字、图片、音频等),完全由程序的解析方式决定。如果采用合适的字符编码方式(字符集),字节串可以恢复成字符串;反之亦然,字符串也可以转换成字节串。bytes 类型的数据非常适合在互联网上传输,可以用于网络通信编程;bytes 也可以用来存储图片、音频、视频等二进制格式的文件。...
2022-08-31 11:22:43 2319 7
原创 BUG:ImportError: attempted relative import with no known parent package的解决办法
BUG:ImportError: attempted relative import with no known parent package的解决办法
2022-08-30 10:59:08 532 8
原创 Python从入门到实践:包的使用
随着模块数目的增多,把所有模块不加区分地放到一起也是极不合理的,于是Python为我们提供了一种把模块组织到一起的方法,即创建一个包。包就是一个含有_init_.py文件的文件夹,文件夹内可以组织子模块或子包...
2022-08-30 10:00:44 517 2
原创 Python从入门到实践:模块的使用
将程序模块化会使得程序的组织结构清晰,维护起来更加方便。使用模块既保证了代码的重用性,又增强了程序的结构性和可维护性。另外除了自定义模块外,我们还可以导入使用内置或第三方模块提供的现成功能,这大大提高了编程的效率,也体现了“避免重复造轮子”的思想!...
2022-08-29 20:19:20 360 3
原创 Python从入门到实践:函数基础知识(函数定义、形参与实参)
很多时候,我们需要重复的应用一个功能,比如,我们在设计网页的时候,我们会重复用到“登录”功能,我们就可以把它写成一个函数,把它封装起来,这样方便我们随时调用,这在一定程度上可以增强程序的可读性,让程度看起来更清晰。...
2022-08-29 11:52:07 1162 2
原创 Python从入门到实践:函数之两种编程思想(面向过程与函数式编程)
“面向过程”的重心就在过程二字,把一个大问题拆分成很多个小问题,然后依次执行每个小问题,这是一种流水线的、从上而下的过程。
2022-08-29 10:33:52 628 2
原创 Python从入门到实践:函数之函数递归
函数不仅可以嵌套定义,还可以嵌套调用,即在调用一个函数的过程中,函数内部又调用另一个函数,而函数的递归调用指的是在调用一个函数的过程中又直接或间接地调用该函数本身
2022-08-29 09:58:03 139 1
原创 Python从入门到实践:函数之迭代器
可选代对象(Iterable)。从语法形式上讲,内置有_iter_方法的对象都是可选代对象,字符串、列表、元组、字典、集合、打开的文件都是可选代对象:
2022-08-28 16:53:16 617 2
原创 Python从入门到实践:函数之装饰器
把原来能运行的程序改成bug,这就破坏了程序的封闭原则,登录的功能我们一般是不做修改的。开放式功能的对外拓展,比如登录系统的功能可以对外拓展很多功能。所以,有没有什么办法,没在不修改原来的代码情况下,添加功能?这就是装饰器!......
2022-08-27 21:40:11 3276 2
原创 Python从入门到实践:函数之函数对象与闭包
在面向对象中,一切皆对象,通过类实例化后的对象是对象,类本身也可以视为对象。函数对象也可以视为一种对象。我们可以把函数对象视为一个变量(本身其实一个地址,我们可以通过地址进行访问),既然函数是一个变量,那函数就可以被引用、可以作为容器中的元素、可以作为参数传给另一个函数,函数的返回值也可以是一个函数。...
2022-08-27 20:56:16 154 5
原创 Python从入门到实践:异常处理
异常是程序发生错误的信号。程序一旦出现错误,便会产生一个异常,若程序中没有处理它,就会抛出该异常,程序的运行
2022-08-26 16:56:00 142 2
原创 Python从入门到实践:面向对象之元类(八)
如果一切皆为对象,那么类本质也是一个对象,既然所有的对象都是调用类得到的,那么必然也是调用了一个类得到的,这个类称为元类。
2022-08-25 21:15:49 178 4
原创 Python从入门到实践:面向对象之内置方法(七)
Python的Class机制内置了很多特殊的方法来帮助使用者高度定制自己的类,这些内置方法都是以双下划线开头和结尾的,会在满足某种条件时自动触发。
2022-08-24 17:32:27 431 3
原创 Python从入门到实践:面向对象之反射机制(六)
我们之前说了,反射(hasattr、getattr、setattr、delattr)作用的是对象,而面向对象的思想是“一切皆对象”,所以,对象和类都可以视为对象,所以,反射也可以作用于类
2022-08-24 16:47:03 178 1
原创 深度学习基础:with torch.no_grad()或@torch.no_grad() 用法
with torch.no_grad()或@torch.no_grad() 用法
2022-08-20 20:08:25 1900 1
原创 Python从入门到实践:面向对象之绑定方法和非绑定方法(五)
类中定义的函数分为两大类:绑定方法和非绑定方法其中绑定方法又分为绑定到对象的对象方法和绑定到类的类方法。在类中正常定义的函数默认是绑定到对象的,而为某个函数加上装饰器后,该函数就绑定到了类。...
2022-08-20 18:23:29 387 2
原创 Python从入门到实践:面向对象之多态(四)
多态性指的是可以在不用考虑对象具体类型的情况下而直接使用对象,这就需要在设计时,把对象的使用方法统一成一种:例如cat、 dog,pig都是动物,但凡是动物肯定有talk方法,于是我们可以不用考虑它们三者的具体是什么类型的动物,而直接使用。综上我们得知,多态性的本质在于不同的类中定义有相同的方法名,这样我们就可以不考虑类而统一用一种方式去使用对象,可以通过在父类引入抽象类的概念来硬性限制子类必须有某些方法名。多态指的是一类事物有多种形态,比如动物有多种形态:猫、狗、猪。...
2022-08-20 18:08:23 307 1
原创 Python从入门到实践:面向对象之继承与派生(三)
继承的目的是解决代码重用,他是一种新建类的方法,在python中,新建类可以单继承和多继承(继承多个父类,java没有多继承),新建类称为子类,被继承的类称为父类。
2022-08-20 17:42:07 372 1
原创 Python从入门到实践:面向对象之封装(二)
面向对象编程的三大特性:封装、继承、多态。封装就是把“数据”和“功能”整合在一起。针对封装到对象或者类中的属性,我们可以严格控制对他们的访问,分为隐藏属性和开放接口。
2022-08-20 13:18:02 336
原创 Python从入门到实践:面向对象基础概念(一)
所有的程序都是由“数据”与“功能”组成,“数据”很好理解,比如学生的名字,学生的性别,程序的“功能”是一系列动态的操作,比如查看学生的名字,查看学生的性别。在面向对象这个概念出来之前,我们的程序是基于过程的,也就是面向过程编程......
2022-08-18 21:07:48 332
原创 BUG:训练Unet时,卡在data_loader不动,解决办法
一直不动,有的人说修改num_works=0,但是根本解决不了问题,经过不懈努力,我发现问题的根源在数据集,我们一般使用的图片为png格式或者pig格式,但是Unet网络的原始数据是做医学图像分割的,他的训练数据格式是tif,所以我们在定义dataset的时候,会与普通的图片格式有所不同:...
2022-07-19 17:57:22 1839
原创 深度学习基础:深入理解Squeeze-and-Excitation (SE)网络
对于CNN网络来说,其核心计算是卷积算子,其通过卷积核从输入特征图学习到新特征图。从本质上讲,卷积是对一个局部区域进行特征融合,这包括空间上(H和W维度)以及通道间(C维度)的特征融合 我们可以发现卷积实际上是对局部区域进行的特征融合。 这也导致了普通卷积神经网络的感受野不大,当然你也可以设计出更多的通道特征来增加这个,但是这样做导致了计算量大大的增加。因此为了空间上融合更多特征融合,或者是提取多尺度空间信息。也提出了许多不同的方法如Inception网络的多分支结构。对于channel维度的特征融合,卷积
2022-06-19 17:10:49 4449 3
原创 从零开始Pytorch深度学习-完整的训练过程
数据封装1.先获取训练集和验证集的图片图片路径(放在列表里面)、对应标签其文件路径如图1所示图1代码如下: train_images_path, train_images_label, val_images_path, val_images_label = read_split_data(args.data_path)read_split_data()函数的定义如下:def read_split_data(root: str, val_rate: float ...
2022-05-24 10:22:06 2770 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人