2021考研408计算机组成原理知识点整理汇总(参考王道书、唐朔飞教材)【不断更新完善中...

本文详细介绍了计算机组成原理中的重要概念,包括冯诺依曼计算机的特点、运算方法(如补码、浮点数运算)、主存储器类型、指令系统、中央处理器的工作原理以及I/O设备的相关知识。内容涵盖了数据的表示、存储器层次结构、浮点数运算、存储器管理和控制、以及中断服务程序流程等核心知识点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Principle-of-Computer-Composition

计算机组成原理思维导图

计算机组成

第一章 计算机系统概论

冯诺依曼型计算机特点

  • 1.计算机由运算器,控制器,存储器,输入和输出设备5部分组成
  • 2.采用存储程序的方式,程序和数据放在同一个存储器中,并以二进制表示。
  • 3.指令由操作码和地址码组成
  • 4.指令在存储器中按执行顺序存放,由指令计数器(即程序计数器PC)指明要执行的指令所在的储存单元地址,一般按顺序递增,但可按运算结果或外界条件而改变
  • 5.机器以运算器为中心,输入输出设备与存储器间的数据传送都通过运算器

区别以运算器为中心的计算机还是存储器的方法

  • 看输入设备能否直接与存储器相连,是的话就是以存储器为中心

计算机系统

  • 硬件
    • 结构
      • 主机
        • cpu
          • ALU运算器
          • CU控制器
        • 存储器
          • 主存
          • 辅存
      • I/O
        • 输入设备
        • 输出设备
    • 主要技术指标
      • 机器字长
        • CPU一次能处理的数据位数
      • 存储容量
        • 存储容量=存储单元个数×存储字长
      • 运算速度
        • 单位时间执行指令的平均条数,MIPS
  • 软件
    • 系统软件
      • 用来管理整个计算机系统
        • 语言处理程序
        • 操作系统
        • 服务性程序
        • 数据库管理系统
        • 网络软件
    • 应用软件
      • 按任务需要编制成的各种程序

第三章 运算方法和运算部件

数据的表示方法和转换

  • 机器数正0负1
    • 符号数值化的带符号二进制数,称为机器数。
  • 真值:符号位加绝对值
  • 余三码:在8421码的基础上,把每个编码都加上0011
    • 当两个余三码想加不产生进位时,应从结果中减去0011;产生进位时,应将进位信号送入高位,本位加0011
  • 格雷码:任何两个相邻编码只有1个二进制位不同,而其余3个二进制位相同
  • 8421码
    • 权值从高到低为8、4、2、1
      • 算术运算时,需对运算结果进行修正。 方法:如果小于、等于(1001)2,不需要修正;否则加6修正

带符号的二进制数据在计算机中的表示方法及加减法运算

  • 原码
    • 定义
      • 最高位为符号位0/1+数值的绝对值形式
    • 特点
      • (1)值+0,-0的原码分别为00000、10000,形式不唯一;
      • (2)正数的原码码值随着真值增长而增长
        •  负数的原码码值随着真值增长而减少
          
      • (3)n+1位原码表示定点整数范围-(2n-1)——2n-1
        •  n+1位原码表示定点小数范围 -(1-2-n)——1-2-n
          
    • 运算
      • 绝对值相加减,由数值大小决定运算结果符号
  • 补码
    • 定义,特点和运算
      • 运算:
        结果不超过机器所能表示范围时,[X+Y]补=[X]补+[Y]补
        减法运算:
        [X–Y]补=[X+(–Y)]补=[X]补+[–Y]补
      • 结论
        • 负数的补数=模+负数
        • 互为补数的绝对值相加=模
        • 在补数中,减法运算即加法运算
      • 定义
        • 定义法,即[X]补=2·符号位+X (MOD 2)
        • X为正数,则符号0+X的绝对值;X为负数,则X的绝对值取反+1。
      • 特点
        • 数值零的补码表示唯一
        • 正数补码码值随着真值增大而增大,负数补码码值随着真值增大而增大
        • n+1位补码所表示定点整数范围- 2n——2n-1,n+1位补码所表示定点小数范围-1——1-2-n
    • 加法运算逻辑事例
      • 过程
      • 加减法运算的溢出处理
        • 溢出定义
          • 当运算结果超出机器数所能表示的范围
        • 加减中,可能产生溢出的情况
          • 可能出现溢出
            • 同号数相加
            • 异号数相减
          • 不可能出现溢出
            • 异号数相加
            • 同号数相减
        • 判断溢出的方法
          • 法一:当符号相同两数相加,结果符号和加数(或被加数)不相同,则溢出
            • fa,fb表示两操作数(A,B)的符号位,fs为结果的符号位
          • 法二:任意符号相加,如果C=Cf,则结果正确,否则溢出;
            • C为数值最高位的进位,Cf为符号位的进位
          • 法三:采用双符号相加,如果fs1=fs2,则结果正确,否则溢出;
            • 运算结果的符号位为fs2;
            • 多符号位的补码,叫做变形补码;
            • 如果采用双符号位,当数为小数时,模m=4;当数为整数时,模m=2的n+2次方
  • 反码
    • 定义
      • a.定义法,即[X]反=(2-2-n)·符号位+X (MOD 2-2-n)
      • b.X是正数,[X]反=[X]原;X是负数,符号+数值取反。
    • 特点
      • 数值零的反码表示不唯一
      • 正数反码码值随着真值增大而增大,负数反码码值随着真值增大而增大
      • n+1位反码所表示定点整数范围- (2n-1)——2n-1,n+1位反码所表示定点小数范围-(1-2-n)——1-2-n
    • 加减运算特点
      • 在机器数范围内,反码运算满足[X+Y]反=[X]反+[Y]反
        ,[X-Y]反=[X]反+[-Y]反
    • 反码运算在最高位有进位时,要在最低位+1,此时要多进行一次加法运算,增加了复杂性,又影响了速度,因此很少采用
    • 由于反码运算是以2-2的-次方为模,所以,当最高位有进位而丢掉进位(即2)时,要在最低位+/-1
  • 移码
    • 由来及窍门
      • 为了从码值直接判断对应真值的大小,所以引进移码
      • [X]补的符号位取反,即得[X]移
    • 特点
      • 最高位是符号位,1表示正,0表示负
      • 数据0有唯一的编码
      • 移码码值随着真值增大而增大
      • n+1位移码所表示定点整数范围- 2n——2n-1, n+1位移码所表示定点小数范围-1——1-2-n
      • 计算机中,移码常用于表示阶码,故只执行加、减运算
      • 计算机中,移码运算公式需要对结果进行修正
    • 浮点数的阶码运算
      • 移码定义:[X]移=2的n次方+X
      • 补码定义:[X]补=2的n+1次方+Y
      • 阶码求和公式
        • [X]移+[Y]补=[X+Y]移 mod2的n+1次方
        • [X]移+[-Y]补=[X-Y]移
        • 判溢方法
          • 双符号位参加运算,最高符号位恒置0
          • 当结果最高符号位=1则溢出
            • 低位符
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值