大帅出品,必属精品
记录学习pytorch的全过程,入门教程使用deeplizard的pytorch教程网站里包括视频和讲解博文,因为视频在YouTube上,这里贴出B站上的中文字幕课程视频。新人上路,希望大家多多指正。
1. 为什么是pytorch
在深度学习领域,框架已经比较成熟,再tensorFlow2.0发布之后,工业界基本是tensorFlow一家独大(caffe哭),这很大程度上是因为tensorFlow庞大社区的支持和设备管理上简单的操作。而pytorch因为与python是好基友而且和numpy等科学计算库相容性较好,且容易调试,成了科研界的爱宠。由于作者是为了做科研项目(捡垃圾吃)而学习所以使用torch。这里也推荐要读研的小伙伴可以首选学习torch。
2. pytorch安装
首先,作为计算机专业的学生,安装东西当然要去官网啦
那么->torch传送门
本机使用anaconda的python3.7版本为准,且小破本没有N卡。。。
假设你已经安装anaconda(或者没有),那么打开传送门,选择合适你的torch类型
以上
- Package中如果是anaconda安装的python就选择Conda,否则选Pip
- CUDA显卡号,需要对应自己电脑的版本。我的笔记本没有独显所以选None
复制Run this Command中的命令,打开conda的命令行,CV这条命令(如果是pip,那就打开自己电脑的终端CV对应的命令)。
装的时候。。。网不是很好,该怎么做大家是知道的。
这里就不展示安装的具体过程了,反正只要y个不停就完事了呗。安装结束之后你的电脑上就已经有了pytorch和对应版本的torchvision(里面会有数据集和一些别的功能)。
3. 验证安装
验证安装需要先导入这两个包
import torch import torchvision
再用.__version__
方法查看版本
print(torchvision.__version__) print(torch.__version__)
如果没有猜错的话,它应该是这样的
这里基本不会有什么问题,唯一我能想到的就是torch版本和torchvision版本不匹配问题,解决方法:卸载旧版本的torch或者torchvision,重新安装。
如果是用conda的同学可能习惯在conda的包管理器里直接找包下载,当然懒的时候这确实很好用,但是!!!torch不行版本差着十万八千里。
有能(金)力(钱)的同学如果使用N卡的话还需要验证你的显卡是否已经和torch完美结合。cuda的使用也很简单,只要在所有的计算代码后加上.cuda()
即可,因为本机上全部使用cou计算,所以今后所有的代码都是默认不用cuda的,有条件的小伙伴记得加哦。
简单解释一下为什么需要用到显卡计算。因为显卡有着巨大量的计算核心,这是你的cpu所不具备的。举个简单的例子(因为实在没看懂大佬的讲解):他们的区别就像1个大学生和1000个小学生一样,当面对高数的时候大学生是主力,但是当计算冗杂且并不复杂的神经网络计算时,就像做一千道两位数加减法。大学生再怎么厉害也需要很久很久,可是一千个小学生只需要20秒。
参考
[1]31 | GPU(下):为什么深度学习需要使用 GPU?
[2]TensorFlow与PyTorch对比
[3]Pytorch还是Tensorflow?英伟达工程师帮你总结了