Gl_Zhang96
码龄4年
  • 41,371
    被访问
  • 16
    原创
  • 1,058,286
    排名
  • 11
    粉丝
关注
提问 私信

个人简介:Keep Coding…

  • 加入CSDN时间: 2018-10-24
博客简介:

Gl_Zhang的博客

查看详细资料
个人成就
  • 获得34次点赞
  • 内容获得6次评论
  • 获得101次收藏
创作历程
  • 1篇
    2019年
  • 22篇
    2018年
成就勋章
TA的专栏
  • C/C++
    8篇
  • 机器学习
    7篇
  • Linux
    2篇
  • 数据结构
    3篇
  • 算法
    4篇
  • LeetCode
    1篇
  • 说明文档
    1篇
兴趣领域 设置
  • 数据结构与算法
    推荐算法
  • 人工智能
    tensorflownlp聚类集成学习
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

python-正则表达式入门初级篇

Python 正则表达式入门(初级篇)本文主要为没有使用正则表达式经验的新手入门所写。转载请写明出处引子首先说 正则表达式是什么?正则表达式,又称正规表示式、正规表示法、正规表达式、规则表达式、常规表示法(英语:Regular Expression,在代码中常简写为regex、regexp或RE),计算机科学的一个概念。正则表达式使用单个字符串来描述、匹配一系列匹配某个句法规则的字符串...
转载
发布博客 2019.01.05 ·
111 阅读 ·
1 点赞 ·
0 评论

算法:子集和数问题N-Sum(N数之和)

在LeetCode上有两数之和,三数之和,四数之和的问题…干脆直接写一个N数之和问题描述已知数组A[0…N-1],给定某数值sum,找出数组中的若干个数,使得这些数的和为sum解决方法设一个bool向量x[0…N-1]x[i]=0表示不取A[i],x[i]=1表示取A[i]这是个NP问题首先采用直接递归(枚举法)代码如下:#include <iostream>...
原创
发布博客 2018.12.29 ·
6155 阅读 ·
3 点赞 ·
2 评论

根据具体实例谈回溯算法

什么是回溯法回溯算法也叫试探法,它是一种系统地搜索问题的解决方法,实际上是一个类似枚举的搜索尝试过程,主要是在搜索尝试过程中寻找问题的解,当发现已不满足求解条件时,就“回溯”返回,尝试别的路径。回溯法是一种选优搜索法,按选优条件向前搜索,以达到目标,但当探索到某一步时,发现原先选择并不优或达不到目标时,就退回一步重新选择。这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点成为“回溯...
原创
发布博客 2018.12.25 ·
234 阅读 ·
1 点赞 ·
0 评论

如何更好的理解和掌握 KMP 算法

有些算法,适合从它产生的动机,如何设计与解决问题这样正向地去介绍。但KMP算法真的不适合这样去学。最好的办法是先搞清楚它所用的数据结构是什么,再搞清楚怎么用,最后为什么的问题就会有恍然大悟的感觉。我试着从这个思路再介绍一下。大家只需要记住一点,PMT是什么东西。然后自己临时推这个算法也是能推出来的,完全不需要...
转载
发布博客 2018.12.22 ·
107 阅读 ·
0 点赞 ·
0 评论

排序算法的比较

排序算法的比较一、简单排序(冒泡、插入)1. 冒泡排序void Bubble_sort(ElementType A[], int N){ for(P = N - 1; P >= 0; P--) { flag = 0; for(i = 0; i < P; i++) { //一趟冒泡 if(A[i] > A[i + 1]) { Swap(A[...
原创
发布博客 2018.12.08 ·
97 阅读 ·
0 点赞 ·
0 评论

浅谈深度信念网络(Deep Belief Network)

浅谈深度信念网络(Deep Belief Network)一、受限玻尔兹曼机(Restricted Boltzmann Machines )RBM简介如图所示,一个受限玻尔兹曼机由两层网络组成,分别为可见层(Visible layer)和隐藏层(Hidden layer)。其中,输入特征与可见层关联,特征检测器与隐藏层关联。两层之间为全连接,而层内无连接。定义可见单元(v)和隐藏单元(h...
原创
发布博客 2018.11.25 ·
4126 阅读 ·
3 点赞 ·
0 评论

OJ编程题输入数据的处理

OJ编程题输入数据的处理一、scanf表达式的值scanf(…)表达式的值为int,表示成功读入的变量个数。scanf(…)值为EOF(即-1)则说明输入数据已经结束二、cin表达式的值cin >> m >> n … 表达式的值,在成功读入所有变量时为true,否则为false三、处理无结束标记的OJ题目输入或三、用freopen重定...
原创
发布博客 2018.11.24 ·
1575 阅读 ·
3 点赞 ·
1 评论

CSDN数学公式指导手册

#Cmd Markdown 公式指导手册标签: Tutorial2018-03-20 补档:收到很多小伙伴对本文的源文档转载需求,故传了一份 md 文件,请按需 下载 。本文固定链接: https://www.zybuluo.com/codeep/note/163962点击跳转至 Cmd Markdown 简明语法手册 ,立刻开始 Cmd Markdown 编辑阅读器的记录和写...
转载
发布博客 2018.11.23 ·
336 阅读 ·
1 点赞 ·
0 评论

LeetCode 718.最长重复子数组

题目描述给两个整数数组 A 和 B ,返回两个数组中公共的、长度最长的子数组的长度。示例 1:输入:A: [1,2,3,2,1]B: [3,2,1,4,7]输出: 3解释:长度最长的公共子数组是 [3, 2, 1]。说明:1 <= len(A), len(B) <= 10000 <= A[i], B[i] < 100使用算法使用动态规划(Dynam...
原创
发布博客 2018.11.21 ·
584 阅读 ·
0 点赞 ·
1 评论

算法优化实例

算法优化实例算法时间复杂度T(N)=O(N3)T(N)=O(N^3)T(N)=O(N3)完全没有比必要每次j++,用k循环再把ThisSum重新算一遍,直接再往后加一个数就好算法时间复杂度T(N)=O(N2)T(N)=O(N^2)T(N)=O(N2),本能地希望改进为T(N)=O(NlogN)T(N)=O(NlogN)T(N)=O(NlogN)“在线”的意思是指每输入一个数据就能进...
原创
发布博客 2018.11.19 ·
2234 阅读 ·
0 点赞 ·
0 评论

算法复杂度分析方法

什么是好的算法空间复杂度S(n)S(n)S(n)——根据算法写成的程序在执行时占用存储单元的长度。这个长度往往与输入数据的规模有关。空间复杂度过高的算法可能导致使用的内存超限,造成程序非正常中断。时间复杂度T(n)T(n)T(n)——根据算法写成的程序在执行时耗费时间的长度。这个长度往往也与输入数据的规模有关。时间复杂度过高的低效算法可能导致我们在有生之年都等不到这个结果。例如:输入...
原创
发布博客 2018.11.19 ·
1672 阅读 ·
1 点赞 ·
0 评论

char *p = "123"和char a[] = "123"根本就不同

    示例代码如下: #include <stdio.h> int main(void){ char *p = "123"; //等价于char *p; p = "123
转载
发布博客 2018.11.16 ·
1343 阅读 ·
0 点赞 ·
0 评论

Linux学习笔记(2)

Linux学习笔记(2)一、Vim文本编辑器1. VIM编辑器概述Visual Interface(可视化接口)VI -> VIM(升级)VIM支持多级撤销VIM可以跨平台运行VIM支持语法高亮VIM支持图形界面2.VIM编辑器的操作模式Command Mode 命令模式Insert Mode 输入模式Last Line Mode 底行模式(尾行,末行)3....
原创
发布博客 2018.11.15 ·
78 阅读 ·
0 点赞 ·
0 评论

对似然函数的理解

对似然函数的理解 一直对贝叶斯里面的似然函数(likelihood function),先验概率(prior),后验概率(posterior)理解得不是很好,今天仿佛有了新的理解,记录一下。看论文的时候读到这样一句话:原来只关注公式,所以一带而过。再重新看这个公式前的描述,细思极恐。the likelihood function of t...
转载
发布博客 2018.11.08 ·
1298 阅读 ·
0 点赞 ·
0 评论

浅谈人工智能本质及其与信号处理智能化算法关系

浅谈人工智能本质及其与信号处理智能化算法关系一、人工智能的本质随着大数据的发展,数据计算与处理能力的大幅度提升,人工智能也在如火如荼的发展,那么人工智能的本质是什么呢?人工智能既然有“人工”两个字,说明其与人的想法思维和认知过程是不可分割的。我认为人工智能的本质就是根据过往的经验来做出现在的判断。举个浅显的例子,当某个人走在路上,没看清路面有个坑,掉了进去,他会告诫自己:“走路一定要看路...
原创
发布博客 2018.11.08 ·
6267 阅读 ·
1 点赞 ·
1 评论

Tensorflow框架搭建神经网络

Tensorflow框架搭建神经网络一、张量、计算图、会话1. 张量多维数组(列表) 阶:张量的维数维数阶名字例子0-D0标量 scalars=1 2 31-D1向量 vectorv=[1,2,3]2-D2矩阵 matrixm=[[1,2,3],[4,5,6],[7,8,9]]n-Dn张量 tensort=[[[… ...
原创
发布博客 2018.11.03 ·
1360 阅读 ·
2 点赞 ·
0 评论

Linux学习笔记(1)

Linux学习笔记一、安装Linux中一切皆文件。1.磁盘分区一个硬盘最多有4个主分区(1-4),其中可以将其中的一个主分区变为扩展分区(最多一个),扩展分区可在分为多个逻辑分区(编号一定从5开始,1-4必须被主分区和逻辑分区使用)。2.挂载必须分区/(根分区)swap分区(交换分区,内存2倍,不超过2GB)推荐分区/ boot(启动分区,200MB)/boot...
原创
发布博客 2018.10.31 ·
99 阅读 ·
0 点赞 ·
0 评论

对训练集,测试集,和验证集的理解

对训练集,测试集,和验证集的理解在网上看了一些资料,做了一些题目之后发现,很多人似乎对这些集合的称呼不太统一。参考周志华老师的《机器学习》,简单说一下自己对这些名词的理解。训练集训练过程使用的数据称为“训练数据”(training data),其中每个样本称为一个“训练样本”(training sample),训练样本的集合称为“训练集”(training set)。测试集“测试集”(t...
原创
发布博客 2018.10.27 ·
1016 阅读 ·
2 点赞 ·
0 评论

深度学习简介——卷积神经网络

原文作者:Alex Cai原文链接:http://www.cnblogs.com/alexcai/p/5506806.html本文的主要目的,是简单介绍时下流行的深度学习算法的基础知识,本人也看过许多其他教程,感觉其中大部分讲的还是太过深奥,于是便有了写一篇科普文的想法。博主也是现学现卖,文中如有不当之处,请各位指出,共同进步。本文的目标读者是对机器学习和神经网络有一定了解的同学(包括:梯度...
转载
发布博客 2018.10.27 ·
410 阅读 ·
0 点赞 ·
0 评论

详解卷积神经网络cnn

原文作者: liuhe_原文地址:https://blog.csdn.net/qq_25762497/article/details/51052861 详解卷积神经网络(CNN)详解卷积神经网络CNN概揽Layers used to build ConvNets卷积层Convolutional ...
转载
发布博客 2018.10.27 ·
763 阅读 ·
0 点赞 ·
0 评论
加载更多