- 题意很清楚,一眼看过去就知道是dfs子树,然后到根节点的时候统计,并且这里都是小写字母,开个26大小的全局数组统计即可。
- 但是,每个子树的字母出现个数都是相互独立的。因为是深度优先,假如我只开一个一维的全局统计数组,那么左子树的个数会影响到右子树的结点统计。所以,要为每个结点都开一个统计数组(所以cnt[][ ]),按照编号区分开一个二维的数组,这样的话,dfs每个子树回溯到根节点的时候,根节点将所有子树的26个字母出现次数加起来即可。
const int MAXN = 1e5 + 5;
vector<int> edge[MAXN];
int cnt[MAXN][27];
int ans[MAXN];
class Solution {
public:
void dfs(int cur, int fa, const string & lab){
for(int son : edge[cur]){
if(son == fa) continue;
dfs(son, cur, lab);
//统计子树每个字符出现过的
//这里每个节点要分开来记,因为一颗子树的状态不能影响另一棵子树的计数 所以这里就按照序号分开来计数
//当dfs每个根节点的子树的时候,将子树的计数结果,一起统计到当前根节点里
for(int i = 0; i < 26; ++i)
cnt[cur][i] += cnt[son][i];
}
cnt[cur][lab[cur] - 'a']++; //根节点也算出现过一次,要加上
//当所有子树都遍历完,ans可以统计了
ans[cur] = cnt[cur][lab[cur] - 'a'];
}
vector<int> countSubTrees(int n, vector<vector<int>>& edges, string labels) {
for(int i = 0; i < MAXN; ++i){
memset(cnt[i], 0, sizeof(cnt[i]));
edge[i].clear();
}
for(auto & e : edges){
edge[e[0]].push_back(e[1]);
edge[e[1]].push_back(e[0]);
}
dfs(0, -1, labels);
vector<int> ret;
for(int i = 0; i < n; ++i)
ret.push_back(ans[i]);
return ret;
}
};