十大经典排序算法

十大经典排序算法

本系列算法整理自:https://github.com/hustcc/JS-Sorting-Algorithm

同时也参考了维基百科做了一些补充。

排序算法是《数据结构与算法》中最基本的算法之一。

排序算法可以分为内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存。常见的内部排序算法有:插入排序、希尔排序、选择排序、冒泡排序、归并排序、快速排序、堆排序、基数排序等。用一张图概括:

img

点击以下图片查看大图:

img

关于时间复杂度

平方阶 (O(n2)) 排序 各类简单排序:直接插入、直接选择和冒泡排序。

线性对数阶 (O(nlog2n)) 排序 快速排序、堆排序和归并排序;

O(n1+§)) 排序,§ 是介于 0 和 1 之间的常数。 希尔排序

线性阶 (O(n)) 排序 基数排序,此外还有桶、箱排序。

关于稳定性

稳定的排序算法:冒泡排序、插入排序、归并排序和基数排序。

不是稳定的排序算法:选择排序、快速排序、希尔排序、堆排序。

名词解释:

  • n:数据规模
  • k:"桶"的个数
  • In-place:占用常数内存,不占用额外内存
  • Out-place:占用额外内存
  • 稳定性:排序后 2 个相等键值的顺序和排序之前它们的顺序相同
    • 包含以下内容:

      • 1、冒泡排序
      • 2、选择排序
      • 3、插入排序
      • 4、希尔排序
      • 5、归并排序
      • 6、快速排序
      • 7、堆排序
      • 8、计数排序
      • 9、桶排序
      • 10、基数排序

1.1 冒泡排序

分类 算法

冒泡排序(Bubble Sort)也是一种简单直观的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢"浮"到数列的顶端。

作为最简单的排序算法之一,冒泡排序给我的感觉就像 Abandon 在单词书里出现的感觉一样,每次都在第一页第一位,所以最熟悉。冒泡排序还有一种优化算法,就是立一个 flag,当在一趟序列遍历中元素没有发生交换,则证明该序列已经有序。但这种改进对于提升性能来

说并没有什么太大作用。

1. 算法步骤

比较相邻的元素。如果第一个比第二个大,就交换他们两个。

对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。这步做完后,最后的元素会是最大的数。

针对所有的元素重复以上的步骤,除了最后一个。

持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。

2. 动图演示

img

3. 什么时候最快

当输入的数据已经是正序时(都已经是正序了,我还要你冒泡排序有何用啊)。

4. 什么时候最慢

当输入的数据是反序时(写一个 for 循环反序输出数据不就行了,干嘛要用你冒泡排序呢,我是闲的吗)。

5. JavaScript 代码实现

实例
function bubbleSort(arr) {
    var len = arr.length;
    for (var i = 0; i < len - 1; i++) {
        for (var j = 0; j < len - 1 - i; j++) {
            if (arr[j] > arr[j+1]) {        // 相邻元素两两对比
                var temp = arr[j+1];        // 元素交换
                arr[j+1] = arr[j];
                arr[j] = temp;
            }
        }
    }
    return arr;
}

6. Python 代码实现

实例
def bubbleSort(arr):
    for i in range(1, len(arr)):
        for j in range(0, len(arr)-i):
            if arr[j] > arr[j+1]:
                arr[j], arr[j + 1] = arr[j + 1], arr[j]
    return arr

7. Go 代码实现

实例
func bubbleSort(arr []int) []int {
        length := len(arr)
        for i := 0; i < length; i++ {
                for j := 0; j < length-1-i; j++ {
                        if arr[j] > arr[j+1] {
                                arr[j], arr[j+1] = arr[j+1], arr[j]
                        }
                }
        }
        return arr
}

8. Java 代码实现

实例
public class BubbleSort implements IArraySort {

     @Override
     public int[] sort(int[] sourceArray) throws Exception {
         // 对 arr 进行拷贝,不改变参数内容
         int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);

         for (int i = 1; i < arr.length; i++) {
             // 设定一个标记,若为true,则表示此次循环没有进行交换,也就是待排序列已经有序,排序已经完成。
             boolean flag = true;

             for (int j = 0; j < arr.length - i; j++) {
                 if (arr[j] > arr[j + 1]) {
                     int tmp = arr[j];
                     arr[j] = arr[j + 1];
                     arr[j + 1] = tmp;

                     flag = false;
                 }
             }

             if (flag) {
                 break;
             }
         }
         return arr;
     }
}

9. PHP 代码实现

实例
function bubbleSort($arr)
{
    $len = count($arr);
    for ($i = 0; $i < $len - 1; $i++) {
        for ($j = 0; $j < $len - 1 - $i; $j++) {
            if ($arr[$j] > $arr[$j+1]) {
                $tmp = $arr[$j];
                $arr[$j] = $arr[$j+1];
                $arr[$j+1] = $tmp;
            }
        }
    }
    return $arr;
}

10. C 语言

实例
#include <stdio.h>
void bubble_sort(int arr[], int len) {
        int i, j, temp;
        for (i = 0; i < len - 1; i++)
                for (j = 0; j < len - 1 - i; j++)
                        if (arr[j] > arr[j + 1]) {
                                temp = arr[j];
                                arr[j] = arr[j + 1];
                                arr[j + 1] = temp;
                        }
}
int main() {
        int arr[] = { 22, 34, 3, 32, 82, 55, 89, 50, 37, 5, 64, 35, 9, 70 };
        int len = (int) sizeof(arr) / sizeof(*arr);
        bubble_sort(arr, len);
        int i;
        for (i = 0; i < len; i++)
                printf("%d ", arr[i]);
        return 0;
}

11. C++ 语言

实例
#include <iostream>
using namespace std;
template<typename T> //整数或浮点数皆可使用,若要使用类(class)或结构体(struct)时必须重载大于(>)运算符
void bubble_sort(T arr[], int len) {
        int i, j;
        for (i = 0; i < len - 1; i++)
                for (j = 0; j < len - 1 - i; j++)
                        if (arr[j] > arr[j + 1])
                                swap(arr[j], arr[j + 1]);
}
int main() {
        int arr[] = { 61, 17, 29, 22, 34, 60, 72, 21, 50, 1, 62 };
        int len = (int) sizeof(arr) / sizeof(*arr);
        bubble_sort(arr, len);
        for (int i = 0; i < len; i++)
                cout << arr[i] << ' ';
        cout << endl;
        float arrf[] = { 17.5, 19.1, 0.6, 1.9, 10.5, 12.4, 3.8, 19.7, 1.5, 25.4, 28.6, 4.4, 23.8, 5.4 };
        len = (float) sizeof(arrf) / sizeof(*arrf);
        bubble_sort(arrf, len);
        for (int i = 0; i < len; i++)
                cout << arrf[i] << ' '<<endl;
        return 0;
}

12. C#

实例
static void BubbleSort(int[] intArray) {
    int temp = 0;
    bool swapped;
    for (int i = 0; i < intArray.Length; i++)
    {
        swapped = false;
        for (int j = 0; j < intArray.Length - 1 - i; j++)
            if (intArray[j] > intArray[j + 1])
            {
                temp = intArray[j];
                intArray[j] = intArray[j + 1];
                intArray[j + 1] = temp;
                if (!swapped)
                    swapped = true;
            }
        if (!swapped)
            return;
    }
}

13. Ruby

实例
class Array
  def bubble_sort!
     for i in 0...(size - 1)
       for j in 0...(size - i - 1)
         self[j], self[j + 1] = self[j + 1], self[j] if self[j] > self[j + 1]
       end
     end
     self
  end
end

puts [22, 34, 3, 32, 82, 55, 89, 50, 37, 5, 64, 35, 9, 70].bubble_sort!

14. Swift

实例
import Foundation

func bubbleSort (arr: inout [Int]) {
     for i in 0..<arr.count - 1 {
         for j in 0..<arr.count - 1 - i {
             if arr[j] > arr[j+1] {
                 arr.swapAt(j, j+1)
             }
         }
     }
}

// 测试调用

func testSort () {
     // 生成随机数数组进行排序操作
     var list:[Int] = []
     for _ in 0...99 {
         list.append(Int(arc4random_uniform(100)))
     }
     print("\(list)")
     bubbleSort(arr:&list)
     print("\(list)")
}

改进版冒泡排序

  • 冒泡排序第1次遍历后会将最大值放到最右边,这个最大值也是全局最大值。
  • 标准冒泡排序的每一次遍历都会比较全部的元素,虽然最右侧的值已经是最大值了。
  • 改进之后,每次遍历后的最大值,次大值,等等会固定在右侧,避免了重复比较。
Python 实现
def bubbleSort(arr):
    for i in range(len(arr) - 1, 0, -1):  # 反向遍历
        for j in range(0, i):  # 由于最右侧的值已经有序,不再比较,每次都减少遍历次数
            if arr[j] > arr[j + 1]:
                arr[j], arr[j + 1] = arr[j + 1], arr[j]
    return arr
Go 实现
func bubbleSort(arr []int) []int {
    for i := len(arr) - 1; i > 0;i-- { // 反向遍历
        for j := 0; j < i; j++ {
            if arr[j] > arr[j + 1]{
                arr[j], arr[j + 1] = arr[j + 1], arr[j]
            }
        }
    }
    return arr
}

1.2 选择排序

分类 算法

选择排序是一种简单直观的排序算法,无论什么数据进去都是 O(n²) 的时间复杂度。所以用到它的时候,数据规模越小越好。唯一的好处可能就是不占用额外的内存空间了吧。

1. 算法步骤

首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置。

再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。

重复第二步,直到所有元素均排序完毕。

2. 动图演示

img

3.JavaScript 代码实现

实例
function selectionSort(arr) {
    var len = arr.length;
    var minIndex, temp;
    for (var i = 0; i < len - 1; i++) {
        minIndex = i;
        for (var j = i + 1; j < len; j++) {
            if (arr[j] < arr[minIndex]) {     // 寻找最小的数
                minIndex = j;                 // 将最小数的索引保存
            }
        }
        temp = arr[i];
        arr[i] = arr[minIndex];
        arr[minIndex] = temp;
    }
    return arr;
}

4.Python 代码实现

实例
def selectionSort(arr):
    for i in range(len(arr) - 1):
        # 记录最小数的索引
        minIndex = i
        for j in range(i + 1, len(arr)):
            if arr[j] < arr[minIndex]:
                minIndex = j
        \# i 不是最小数时,将 i 和最小数进行交换
        if i != minIndex:
            arr[i], arr[minIndex] = arr[minIndex], arr[i]
    return arr

5.Go 代码实现

实例
func selectionSort(arr []int) []int {
        length := len(arr)
        for i := 0; i < length-1; i++ {
                min := i
                for j := i + 1; j < length; j++ {
                        if arr[min] > arr[j] {
                                min = j
                        }
                }
                arr[i], arr[min] = arr[min], arr[i]
        }
        return arr
}

6.Java 代码实现

实例
public class SelectionSort implements IArraySort {

     @Override
     public int[] sort(int[] sourceArray) throws Exception {
         int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);

         // 总共要经过 N-1 轮比较
         for (int i = 0; i < arr.length - 1; i++) {
             int min = i;

             // 每轮需要比较的次数 N-i
             for (int j = i + 1; j < arr.length; j++) {
                 if (arr[j] < arr[min]) {
                     // 记录目前能找到的最小值元素的下标
                     min = j;
                 }
             }

             // 将找到的最小值和i位置所在的值进行交换
             if (i != min) {
                 int tmp = arr[i];
                 arr[i] = arr[min];
                 arr[min] = tmp;
             }

         }
         return arr;
     }
}

7.PHP 代码实现

实例
function selectionSort($arr)
{
    $len = count($arr);
    for ($i = 0; $i < $len - 1; $i++) {
        $minIndex = $i;
        for ($j = $i + 1; $j < $len; $j++) {
            if ($arr[$j] < $arr[$minIndex]) {
                $minIndex = $j;
            }
        }
        $temp = $arr[$i];
        $arr[$i] = $arr[$minIndex];
        $arr[$minIndex] = $temp;
    }
    return $arr;
}

8.C 语言

实例
void swap(int *a,int *b) //交換兩個變數
{
     int temp = *a;
     *a = *b;
     *b = temp;
}
void selection_sort(int arr[], int len)
{
    int i,j;

        for (i = 0 ; i < len - 1 ; i++)
    {
                int min = i;
                for (j = i + 1; j < len; j++)     //走訪未排序的元素
                        if (arr[j] < arr[min])    //找到目前最小值
                                min = j;    //紀錄最小值
                swap(&arr[min], &arr[i]);    //做交換
        }
}

9.C++

实例
template<typename T> //整數或浮點數皆可使用,若要使用物件(class)時必須設定大於(>)的運算子功能
void selection_sort(std::vector<T>& arr) {
        for (int i = 0; i < arr.size() - 1; i++) {
                int min = i;
                for (int j = i + 1; j < arr.size(); j++)
                        if (arr[j] < arr[min])
                                min = j;
                std::swap(arr[i], arr[min]);
        }
}

10.C#

实例
static void selection_sort<T>(T[] arr) where T : System.IComparable<T>{//整數或浮點數皆可使用
        int i, j, min, len = arr.Length;
        T temp;
        for (i = 0; i < len - 1; i++) {
                min = i;
                for (j = i + 1; j < len; j++)
                        if (arr[min].CompareTo(arr[j]) > 0)
                                min = j;
                temp = arr[min];
                arr[min] = arr[i];
                arr[i] = temp;
        }
}

11.Swift

实例
import Foundation
/// 选择排序
///
/// - Parameter list: 需要排序的数组
func selectionSort(_ list: inout [Int]) -> Void {
    for j in 0..<list.count - 1 {
        var minIndex = j
        for i in j..<list.count {
            if list[minIndex] > list[i] {
                minIndex = i
            }
        }
        list.swapAt(j, minIndex)
    }
}

12.Kotlin

实例
class SelectionSort { 
    /** 
    * 拓展IntArray为他提供数据两个数交换位置的方法 
    * @param i 第一个数的下标 
    * @param j 第二个数的下标 
    */ 
    fun IntArray.swap(i:Int,j:Int){ 
        var temp=this[i] 
        this[i]=this[j] 
        this[j]=temp 
    } 
    fun selectionSort(array: IntArray):IntArray{
        for (i in array.indices){ 
            //假设最小值是i 
            var min=i 
            var j=i+1 
            while (j in array.indices){ 
                if (array[j]<array[min]){ 
                    min=j
                }
                j++ 
            } 
            if (i!=min){
                array.swap(i,min) 
            } 
        } 
        return array; 
    }
}

1.3 插入排序

分类 算法

插入排序的代码实现虽然没有冒泡排序和选择排序那么简单粗暴,但它的原理应该是最容易理解的了,因为只要打过扑克牌的人都应该能够秒懂。插入排序是一种最简单直观的排序算法,它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。

插入排序和冒泡排序一样,也有一种优化算法,叫做拆半插入。

1. 算法步骤

将第一待排序序列第一个元素看做一个有序序列,把第二个元素到最后一个元素当成是未排序序列。

从头到尾依次扫描未排序序列,将扫描到的每个元素插入有序序列的适当位置。(如果待插入的元素与有序序列中的某个元素相等,则将待插入元素插入到相等元素的后面。)

2. 动图演示

img

3.JavaScript

实例
function insertionSort(arr) {
    var len = arr.length;
    var preIndex, current;
    for (var i = 1; i < len; i++) {
        preIndex = i - 1;
        current = arr[i];
        while(preIndex >= 0 && arr[preIndex] > current) {
            arr[preIndex+1] = arr[preIndex];
            preIndex--;
        }
        arr[preIndex+1] = current;
    }
    return arr;
}

4.Python

实例
def insertionSort(arr):
    for i in range(len(arr)):
        preIndex = i-1
        current = arr[i]
        while preIndex >= 0 and arr[preIndex] > current:
            arr[preIndex+1] = arr[preIndex]
            preIndex-=1
        arr[preIndex+1] = current
    return arr

5.Go

实例
func insertionSort(arr []int) []int {
        for i := range arr {
                preIndex := i - 1
                current := arr[i]
                for preIndex >= 0 && arr[preIndex] > current {
                        arr[preIndex+1] = arr[preIndex]
                        preIndex -= 1
                }
                arr[preIndex+1] = current
        }
        return arr
}

6.Java

实例
public class InsertSort implements IArraySort {

     @Override
     public int[] sort(int[] sourceArray) throws Exception {
         // 对 arr 进行拷贝,不改变参数内容
         int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);

         // 从下标为1的元素开始选择合适的位置插入,因为下标为0的只有一个元素,默认是有序的
         for (int i = 1; i < arr.length; i++) {

             // 记录要插入的数据
             int tmp = arr[i];

             // 从已经排序的序列最右边的开始比较,找到比其小的数
             int j = i;
             while (j > 0 && tmp < arr[j - 1]) {
                 arr[j] = arr[j - 1];
                 j--;
             }

             // 存在比其小的数,插入
             if (j != i) {
                 arr[j] = tmp;
             }

         }
         return arr;
     }
}

7.PHP

实例
function insertionSort($arr)
{
    $len = count($arr);
    for ($i = 1; $i < $len; $i++) {
        $preIndex = $i - 1;
        $current = $arr[$i];
        while($preIndex >= 0 && $arr[$preIndex] > $current) {
            $arr[$preIndex+1] = $arr[$preIndex];
            $preIndex--;
        }
        $arr[$preIndex+1] = $current;
    }
    return $arr;
}

8.C

实例
void insertion_sort(int arr[], int len){
        int i,j,key;
        for (i=1;i<len;i++){
                key = arr[i];
                j=i-1;
                while((j>=0) && (arr[j]>key)) {
                        arr[j+1] = arr[j];
                        j--;
                }
                arr[j+1] = key;
        }
}

9.C++

实例
void insertion_sort(int arr[],int len){
        for(int i=1;i<len;i++){
                int key=arr[i];
                int j=i-1;
                while((j>=0) && (key<arr[j])){
                        arr[j+1]=arr[j];
                        j--;
                }
                arr[j+1]=key;
        }
}

10.C#

实例
public static void InsertSort(int[] array)
{
    for(int i = 1;i < array.length;i++)
    {
        int temp = array[i];
        for(int j = i - 1;j >= 0;j--)
        {
            if(array[j] > temp)
            {
                array[j + 1] = array[j];
                array[j] = temp;
            }
            else
                break;
        }
    }
}

11.Swift

实例
for i in 1..<arr.endIndex {
    let temp = arr[i]
    for j in (0..<i).reversed() {
        if arr[j] > temp {
            arr.swapAt(j, j+1)
        }
    }
}

12.Lua

实例
-- 插入排序
function insert_sort(tab)
    len = maxn_ex(tab)
    for i=1,len-1 do
      local j = i+1
      while( j > 1 )  do
        if(tab[j] < tab[j-1]) then
          tab[j],tab[j-1] = tab[j-1],tab[j]
        end
        j = j -1
      end 
    end
    return tab
end

1.4 希尔排序

分类 算法

希尔排序,也称递减增量排序算法,是插入排序的一种更高效的改进版本。但希尔排序是非稳定排序算法。

希尔排序是基于插入排序的以下两点性质而提出改进方法的:

  • 插入排序在对几乎已经排好序的数据操作时,效率高,即可以达到线性排序的效率;
  • 但插入排序一般来说是低效的,因为插入排序每次只能将数据移动一位;

希尔排序的基本思想是:先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,待整个序列中的记录"基本有序"时,再对全体记录进行依次直接插入排序。

1. 算法步骤

选择一个增量序列 t1,t2,……,tk,其中 ti > tj, tk = 1;

按增量序列个数 k,对序列进行 k 趟排序;

每趟排序,根据对应的增量 ti,将待排序列分割成若干长度为 m 的子序列,分别对各子表进行直接插入排序。仅增量因子为 1 时,整个序列作为一个表来处理,表长度即为整个序列的长度。

2. 动图演示

img

3.JavaScript

实例
function shellSort(arr) {
     var len = arr.length,
         temp,
         gap = 1;
     while(gap < len/3) {          //动态定义间隔序列
         gap =gap*3+1;
     }
     for (gap; gap > 0; gap = Math.floor(gap/3)) {
         for (var i = gap; i < len; i++) {
             temp = arr[i];
             for (var j = i-gap; j >= 0 && arr[j] > temp; j-=gap) {
                 arr[j+gap] = arr[j];
             }
             arr[j+gap] = temp;
         }
     }
     return arr;
}

4.Python

实例
def shellSort(arr):
    import math
    gap=1
    while(gap < len(arr)/3):
        gap = gap*3+1
    while gap > 0:
        for i in range(gap,len(arr)):
            temp = arr[i]
            j = i-gap
            while j >=0 and arr[j] > temp:
                arr[j+gap]=arr[j]
                j-=gap
            arr[j+gap] = temp
        gap = math.floor(gap/3)
    return arr

5.Go

实例
func shellSort(arr []int) []int {
         length := len(arr)
         gap := 1
         for gap < gap/3 {
                 gap = gap*3 + 1
         }
         for gap > 0 {
                 for i := gap; i < length; i++ {
                         temp := arr[i]
                         j := i - gap
                         for j >= 0 && arr[j] > temp {
                                 arr[j+gap] = arr[j]
                                 j -= gap
                         }
                         arr[j+gap] = temp
                 }
                 gap = gap / 3
         }
         return arr
}

6.Java

实例
public static void shellSort(int[] arr) {
     int length = arr.length;
     int temp;
     for (int step = length / 2; step >= 1; step /= 2) {
         for (int i = step; i < length; i++) {
             temp = arr[i];
             int j = i - step;
             while (j >= 0 && arr[j] > temp) {
                 arr[j + step] = arr[j];
                 j -= step;
             }
             arr[j + step] = temp;
         }
     }
}

7.PHP

实例
function shellSort($arr)
{
     $len = count($arr);
     $temp = 0;
     $gap = 1;
     while($gap < $len / 3) {
         $gap = $gap * 3 + 1;
     }
     for ($gap; $gap > 0; $gap = floor($gap / 3)) {
         for ($i = $gap; $i < $len; $i++) {
             $temp = $arr[$i];
             for ($j = $i - $gap; $j >= 0 && $arr[$j] > $temp; $j -= $gap) {
                 $arr[$j+$gap] = $arr[$j];
             }
             $arr[$j+$gap] = $temp;
         }
     }
     return $arr;
}

8.C

实例
void shell_sort(int arr[], int len) {
         int gap, i, j;
         int temp;
         for (gap = len >> 1; gap > 0; gap >>= 1)
                 for (i = gap; i < len; i++) {
                         temp = arr[i];
                         for (j = i - gap; j >= 0 && arr[j] > temp; j -= gap)
                                 arr[j + gap] = arr[j];
                         arr[j + gap] = temp;
                 }
}

9.C++

实例
template<typename T>
void shell_sort(T array[], int length) {
     int h = 1;
     while (h < length / 3) {
         h = 3 * h + 1;
     }
     while (h >= 1) {
         for (int i = h; i < length; i++) {
             for (int j = i; j >= h && array[j] < array[j - h]; j -= h) {
                 std::swap(array[j], array[j - h]);
             }
         }
         h = h / 3;
     }
}

10.C#

实例
static void ShellSort(int[] arr)
{
    int gap = 1;

    while (gap < arr.Length)
    {
        gap = gap * 3 + 1;
    }

    while (gap > 0)
    {
        for (int i = gap; i < arr.Length; i++)
        {
            int tmp = arr[i];
            int j = i - gap;
            while (j >= 0 && arr[j] > tmp)
            {
                arr[j + gap] = arr[j];
                j -= gap;
            }
            arr[j + gap] = tmp;
        }
        gap /= 3;
    }
}

1.5 归并排序

分类 算法

归并排序(Merge sort)是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。

作为一种典型的分而治之思想的算法应用,归并排序的实现由两种方法:

  • 自上而下的递归(所有递归的方法都可以用迭代重写,所以就有了第 2 种方法);
  • 自下而上的迭代;

在《数据结构与算法 JavaScript 描述》中,作者给出了自下而上的迭代方法。但是对于递归法,作者却认为:

However, it is not possible to do so in JavaScript, as the recursion goes too deep for the language to handle.

然而,在 JavaScript 中这种方式不太可行,因为这个算法的递归深度对它来讲太深了。

说实话,我不太理解这句话。意思是 JavaScript 编译器内存太小,递归太深容易造成内存溢出吗?还望有大神能够指教。

和选择排序一样,归并排序的性能不受输入数据的影响,但表现比选择排序好的多,因为始终都是 O(nlogn) 的时间复杂度。代价是需要额外的内存空间。

2. 算法步骤

  1. 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列;
  2. 设定两个指针,最初位置分别为两个已经排序序列的起始位置;
  3. 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置;
  4. 重复步骤 3 直到某一指针达到序列尾;
  5. 将另一序列剩下的所有元素直接复制到合并序列尾。

3. 动图演示

img

4.JavaScript

实例
function mergeSort(arr) {  // 采用自上而下的递归方法
     var len = arr.length;
     if(len < 2) {
         return arr;
     }
     var middle = Math.floor(len / 2),
         left = arr.slice(0, middle),
         right = arr.slice(middle);
     return merge(mergeSort(left), mergeSort(right));
}

function merge(left, right)
{
     var result = [];

     while (left.length && right.length) {
         if (left[0] <= right[0]) {
             result.push(left.shift());
         } else {
             result.push(right.shift());
         }
     }

     while (left.length)
         result.push(left.shift());

     while (right.length)
         result.push(right.shift());

     return result;
}

5.Python

实例
def mergeSort(arr):
     import math
     if(len(arr)<2):
         return arr
     middle = math.floor(len(arr)/2)
     left, right = arr[0:middle], arr[middle:]
     return merge(mergeSort(left), mergeSort(right))

def merge(left,right):
     result = []
     while left and right:
         if left[0] <= right[0]:
             result.append(left.pop(0))
         else:
             result.append(right.pop(0));
     while left:
         result.append(left.pop(0))
     while right:
         result.append(right.pop(0));
     return result

6.Go

实例
func mergeSort(arr []int) []int {
         length := len(arr)
         if length < 2 {
                 return arr
         }
         middle := length / 2
         left := arr[0:middle]
         right := arr[middle:]
         return merge(mergeSort(left), mergeSort(right))
}

func merge(left []int, right []int) []int {
         var result []int
         for len(left) != 0 && len(right) != 0 {
                 if left[0] <= right[0] {
                         result = append(result, left[0])
                         left = left[1:]
                 } else {
                         result = append(result, right[0])
                         right = right[1:]
                 }
         }

         for len(left) != 0 {
                 result = append(result, left[0])
                 left = left[1:]
         }

         for len(right) != 0 {
                 result = append(result, right[0])
                 right = right[1:]
         }

         return result
}

7.Java

实例
public class MergeSort implements IArraySort {

     @Override
     public int[] sort(int[] sourceArray) throws Exception {
         // 对 arr 进行拷贝,不改变参数内容
         int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);

         if (arr.length < 2) {
             return arr;
         }
         int middle = (int) Math.floor(arr.length / 2);

         int[] left = Arrays.copyOfRange(arr, 0, middle);
         int[] right = Arrays.copyOfRange(arr, middle, arr.length);

         return merge(sort(left), sort(right));
     }

     protected int[] merge(int[] left, int[] right) {
         int[] result = new int[left.length + right.length];
         int i = 0;
         while (left.length > 0 && right.length > 0) {
             if (left[0] <= right[0]) {
                 result[i++] = left[0];
                 left = Arrays.copyOfRange(left, 1, left.length);
             } else {
                 result[i++] = right[0];
                 right = Arrays.copyOfRange(right, 1, right.length);
             }
         }

         while (left.length > 0) {
             result[i++] = left[0];
             left = Arrays.copyOfRange(left, 1, left.length);
         }

         while (right.length > 0) {
             result[i++] = right[0];
             right = Arrays.copyOfRange(right, 1, right.length);
         }

         return result;
     }

}

8.PHP

实例
function mergeSort($arr)
{
     $len = count($arr);
     if ($len < 2) {
         return $arr;
     }
     $middle = floor($len / 2);
     $left = array_slice($arr, 0, $middle);
     $right = array_slice($arr, $middle);
     return merge(mergeSort($left), mergeSort($right));
}

function merge($left, $right)
{
     $result = [];

     while (count($Misplaced &left) > 0 && count($right) > 0) {
         if ($left[0] <= $right[0]) {
             $result[] = array_shift($left);
         } else {
             $result[] = array_shift($right);
         }
     }

     while (count($left))
         $result[] = array_shift($left);

     while (count($right))
         $result[] = array_shift($right);

     return $result;
}

9.C

实例
int min(int x, int y) {
     return x < y ? x : y;
}
void merge_sort(int arr[], int len) {
     int *a = arr;
     int *b = (int *) malloc(len * sizeof(int));
     int seg, start;
     for (seg = 1; seg < len; seg += seg) {
         for (start = 0; start < len; start += seg * 2) {
             int low = start, mid = min(start + seg, len), high = min(start + seg * 2, len);
             int k = low;
             int start1 = low, end1 = mid;
             int start2 = mid, end2 = high;
             while (start1 < end1 && start2 < end2)
                 b[k++] = a[start1] < a[start2] ? a[start1++] : a[start2++];
             while (start1 < end1)
                 b[k++] = a[start1++];
             while (start2 < end2)
                 b[k++] = a[start2++];
         }
         int *temp = a;
         a = b;
         b = temp;
     }
     if (a != arr) {
         int i;
         for (i = 0; i < len; i++)
             b[i] = a[i];
         b = a;
     }
     free(b);
}

递归版:

实例
void merge_sort_recursive(int arr[], int reg[], int start, int end) {
     if (start >= end)
         return;
     int len = end - start, mid = (len >> 1) + start;
     int start1 = start, end1 = mid;
     int start2 = mid + 1, end2 = end;
     merge_sort_recursive(arr, reg, start1, end1);
     merge_sort_recursive(arr, reg, start2, end2);
     int k = start;
     while (start1 <= end1 && start2 <= end2)
         reg[k++] = arr[start1] < arr[start2] ? arr[start1++] : arr[start2++];
     while (start1 <= end1)
         reg[k++] = arr[start1++];
     while (start2 <= end2)
         reg[k++] = arr[start2++];
     for (k = start; k <= end; k++)
         arr[k] = reg[k];
}

void merge_sort(int arr[], const int len) {
     int reg[len];
     merge_sort_recursive(arr, reg, 0, len - 1);
}

10.C++

迭代版:

实例
template<typename T> // 整數或浮點數皆可使用,若要使用物件(class)時必須設定"小於"(<)的運算子功能
void merge_sort(T arr[], int len) {
     T *a = arr;
     T *b = new T[len];
     for (int seg = 1; seg < len; seg += seg) {
         for (int start = 0; start < len; start += seg + seg) {
             int low = start, mid = min(start + seg, len), high = min(start + seg + seg, len);
             int k = low;
             int start1 = low, end1 = mid;
             int start2 = mid, end2 = high;
             while (start1 < end1 && start2 < end2)
                 b[k++] = a[start1] < a[start2] ? a[start1++] : a[start2++];
             while (start1 < end1)
                 b[k++] = a[start1++];
             while (start2 < end2)
                 b[k++] = a[start2++];
         }
         T *temp = a;
         a = b;
         b = temp;
     }
     if (a != arr) {
         for (int i = 0; i < len; i++)
             b[i] = a[i];
         b = a;
     }
     delete[] b;
}

递归版:

实例
void Merge(vector<int> &Array, int front, int mid, int end) {
     // preconditions:
     // Array[front...mid] is sorted
     // Array[mid+1 ... end] is sorted
     // Copy Array[front ... mid] to LeftSubArray
     // Copy Array[mid+1 ... end] to RightSubArray
     vector<int> LeftSubArray(Array.begin() + front, Array.begin() + mid + 1);
     vector<int> RightSubArray(Array.begin() + mid + 1, Array.begin() + end + 1);
     int idxLeft = 0, idxRight = 0;
     LeftSubArray.insert(LeftSubArray.end(), numeric_limits<int>::max());
     RightSubArray.insert(RightSubArray.end(), numeric_limits<int>::max());
     // Pick min of LeftSubArray[idxLeft] and RightSubArray[idxRight], and put into Array[i]
     for (int i = front; i <= end; i++) {
         if (LeftSubArray[idxLeft] < RightSubArray[idxRight]) {
             Array[i] = LeftSubArray[idxLeft];
             idxLeft++;
         } else {
             Array[i] = RightSubArray[idxRight];
             idxRight++;
         }
     }
}

void MergeSort(vector<int> &Array, int front, int end) {
     if (front >= end)
         return;
     int mid = (front + end) / 2;
     MergeSort(Array, front, mid);
     MergeSort(Array, mid + 1, end);
     Merge(Array, front, mid, end);
}

11.C#

实例
public static List<int> sort(List<int> lst) {
     if (lst.Count <= 1)
         return lst;
     int mid = lst.Count / 2;
     List<int> left = new List<int>();  // 定义左侧List
     List<int> right = new List<int>(); // 定义右侧List
     // 以下兩個循環把 lst 分為左右兩個 List
     for (int i = 0; i < mid; i++)
         left.Add(lst[i]);
     for (int j = mid; j < lst.Count; j++)
         right.Add(lst[j]);
     left = sort(left);
     right = sort(right);
     return merge(left, right);
}
/// <summary>
/// 合併兩個已經排好序的List
/// </summary>
/// <param name="left">左側List</param>
/// <param name="right">右側List</param>
/// <returns></returns>
static List<int> merge(List<int> left, List<int> right) {
     List<int> temp = new List<int>();
     while (left.Count > 0 && right.Count > 0) {
         if (left[0] <= right[0]) {
             temp.Add(left[0]);
             left.RemoveAt(0);
         } else {
             temp.Add(right[0]);
             right.RemoveAt(0);
         }
     }
     if (left.Count > 0) {
         for (int i = 0; i < left.Count; i++)
             temp.Add(left[i]);
     }
     if (right.Count > 0) {
         for (int i = 0; i < right.Count; i++)
             temp.Add(right[i]);
     }
     return temp;
}

12.Ruby

实例
def merge list
  return list if list.size < 2

  pivot = list.size / 2

  # Merge
  lambda { |left, right|
     final = []
     until left.empty? or right.empty?
       final << if left.first < right.first; left.shift else right.shift end
     end
     final + left + right
  }.call merge(list[0...pivot]), merge(list[pivot..-1])
end

1.6 快速排序

分类 算法

快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序 n 个项目要 Ο(nlogn) 次比较。在最坏状况下则需要 Ο(n2) 次比较,但这种状况并不常见。事实上,快速排序通常明显比其他 Ο(nlogn) 算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来。

快速排序使用分治法(Divide and conquer)策略来把一个串行(list)分为两个子串行(sub-lists)。

快速排序又是一种分而治之思想在排序算法上的典型应用。本质上来看,快速排序应该算是在冒泡排序基础上的递归分治法。

快速排序的名字起的是简单粗暴,因为一听到这个名字你就知道它存在的意义,就是快,而且效率高!它是处理大数据最快的排序算法之一了。虽然 Worst Case 的时间复杂度达到了 O(n²),但是人家就是优秀,在大多数情况下都比平均时间复杂度为 O(n logn) 的排序算法表现要更好,可是这是为什么呢,我也不知道。好在我的强迫症又犯了,查了 N 多资料终于在《算法艺术与信息学竞赛》上找到了满意的答案:

快速排序的最坏运行情况是 O(n²),比如说顺序数列的快排。但它的平摊期望时间是 O(nlogn),且 O(nlogn) 记号中隐含的常数因子很小,比复杂度稳定等于 O(nlogn) 的归并排序要小很多。所以,对绝大多数顺序性较弱的随机数列而言,快速排序总是优于归并排序。

1. 算法步骤

  1. 从数列中挑出一个元素,称为 “基准”(pivot);
  2. 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;
  3. 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序;

2. 动图演示

img

3.JavaScript

实例
function quickSort(arr, left, right) {
     var len = arr.length,
         partitionIndex,
         left = typeof left != 'number' ? 0 : left,
         right = typeof right != 'number' ? len - 1 : right;

     if (left < right) {
         partitionIndex = partition(arr, left, right);
         quickSort(arr, left, partitionIndex-1);
         quickSort(arr, partitionIndex+1, right);
     }
     return arr;
}

function partition(arr, left ,right) {     // 分区操作
     var pivot = left,                      // 设定基准值(pivot)
         index = pivot + 1;
     for (var i = index; i <= right; i++) {
         if (arr[i] < arr[pivot]) {
             swap(arr, i, index);
             index++;
         }        
     }
     swap(arr, pivot, index - 1);
     return index-1;
}

function swap(arr, i, j) {
     var temp = arr[i];
     arr[i] = arr[j];
     arr[j] = temp;
}
function partition2(arr, low, high) {
  let pivot = arr[low];
  while (low < high) {
     while (low < high && arr[high] > pivot) {
       --high;
     }
     arr[low] = arr[high];
     while (low < high && arr[low] <= pivot) {
       ++low;
     }
     arr[high] = arr[low];
  }
  arr[low] = pivot;
  return low;
}

function quickSort2(arr, low, high) {
  if (low < high) {
     let pivot = partition2(arr, low, high);
     quickSort2(arr, low, pivot - 1);
     quickSort2(arr, pivot + 1, high);
  }
  return arr;
}

4 Python

实例
def quickSort(arr, left=None, right=None):
     left = 0 if not isinstance(left,(int, float)) else left
     right = len(arr)-1 if not isinstance(right,(int, float)) else right
     if left < right:
         partitionIndex = partition(arr, left, right)
         quickSort(arr, left, partitionIndex-1)
         quickSort(arr, partitionIndex+1, right)
     return arr

def partition(arr, left, right):
     pivot = left
     index = pivot+1
     i = index
     while  i <= right:
         if arr[i] < arr[pivot]:
             swap(arr, i, index)
             index+=1
         i+=1
     swap(arr,pivot,index-1)
     return index-1

def swap(arr, i, j):
     arr[i], arr[j] = arr[j], arr[i]

5.Go

实例
func quickSort(arr []int) []int {
         return _quickSort(arr, 0, len(arr)-1)
}

func _quickSort(arr []int, left, right int) []int {
         if left < right {
                 partitionIndex := partition(arr, left, right)
                 _quickSort(arr, left, partitionIndex-1)
                 _quickSort(arr, partitionIndex+1, right)
         }
         return arr
}

func partition(arr []int, left, right int) int {
         pivot := left
         index := pivot + 1

         for i := index; i <= right; i++ {
                 if arr[i] < arr[pivot] {
                         swap(arr, i, index)
                         index += 1
                 }
         }
         swap(arr, pivot, index-1)
         return index - 1
}

func swap(arr []int, i, j int) {
         arr[i], arr[j] = arr[j], arr[i]
}

6.C++

实例
//严蔚敏《数据结构》标准分割函数
 Paritition1(int A[], int low, int high) {
   int pivot = A[low];
   while (low < high) {
      while (low < high && A[high] >= pivot) {
        --high;
      }
      A[low] = A[high];
      while (low < high && A[low] <= pivot) {
        ++low;
      }
      A[high] = A[low];
   }
   A[low] = pivot;
   return low;
 }

 void QuickSort(int A[], int low, int high) //快排母函数
 {
   if (low < high) {
      int pivot = Paritition1(A, low, high);
      QuickSort(A, low, pivot - 1);
      QuickSort(A, pivot + 1, high);
   }
 }

7.Java

实例
public class QuickSort implements IArraySort {

     @Override
     public int[] sort(int[] sourceArray) throws Exception {
         // 对 arr 进行拷贝,不改变参数内容
         int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);

         return quickSort(arr, 0, arr.length - 1);
     }

     private int[] quickSort(int[] arr, int left, int right) {
         if (left < right) {
             int partitionIndex = partition(arr, left, right);
             quickSort(arr, left, partitionIndex - 1);
             quickSort(arr, partitionIndex + 1, right);
         }
         return arr;
     }

     private int partition(int[] arr, int left, int right) {
         // 设定基准值(pivot)
         int pivot = left;
         int index = pivot + 1;
         for (int i = index; i <= right; i++) {
             if (arr[i] < arr[pivot]) {
                 swap(arr, i, index);
                 index++;
             }
         }
         swap(arr, pivot, index - 1);
         return index - 1;
     }

     private void swap(int[] arr, int i, int j) {
         int temp = arr[i];
         arr[i] = arr[j];
         arr[j] = temp;
     }

}

8.PHP

实例
function quickSort($arr)
{
     if (count($arr) <= 1)
         return $arr;
     $middle = $arr[0];
     $leftArray = array();
     $rightArray = array();

     for ($i = 1; $i < count($arr); $i++) {
         if ($arr[$i] > $middle)
             $rightArray[] = $arr[$i];
         else
             $leftArray[] = $arr[$Extra close brace or missing open bracei];
     }
     $leftArray = quickSort($leftArray);
     $leftArray[] = $middle;

     $rightArray = quickSort($rightArray);
     return array_merge($leftArray, $rightArray);
}

9.C

实例
typedef struct _Range {
     int start, end;
} Range;

Range new_Range(int s, int e) {
     Range r;
     r.start = s;
     r.end = e;
     return r;
}

void swap(int *x, int *y) {
     int t = *x;
     *x = *y;
     *y = t;
}

void quick_sort(int arr[], const int len) {
     if (len <= 0)
         return; // 避免len等於負值時引發段錯誤(Segment Fault)
     // r[]模擬列表,p為數量,r[p++]為push,r[--p]為pop且取得元素
     Range r[len];
     int p = 0;
     r[p++] = new_Range(0, len - 1);
     while (p) {
         Range range = r[--p];
         if (range.start >= range.end)
             continue;
         int mid = arr[(range.start + range.end) / 2]; // 選取中間點為基準點
         int left = range.start, right = range.end;
         do {
             while (arr[left] < mid) ++left;   // 檢測基準點左側是否符合要求
             while (arr[right] > mid) --right; //檢測基準點右側是否符合要求
             if (left <= right) {
                 swap(&arr[left], &arr[right]);
                 left++;
                 right--;               // 移動指針以繼續
             }
         } while (left <= right);
         if (range.start < right) r[p++] = new_Range(range.start, right);
         if (range.end > left) r[p++] = new_Range(left, range.end);
     }
}

递归法

实例
void swap(int *x, int *y) {
     int t = *x;
     *x = *y;
     *y = t;
}

void quick_sort_recursive(int arr[], int start, int end) {
     if (start >= end)
         return;
     int mid = arr[end];
     int left = start, right = end - 1;
     while (left < right) {
         while (arr[left] < mid && left < right)
             left++;
         while (arr[right] >= mid && left < right)
             right--;
         swap(&arr[left], &arr[right]);
     }
     if (arr[left] >= arr[end])
         swap(&arr[left], &arr[end]);
     else
         left++;
     if (left)
         quick_sort_recursive(arr, start, left - 1);
     quick_sort_recursive(arr, left + 1, end);
}

void quick_sort(int arr[], int len) {
     quick_sort_recursive(arr, 0, len - 1);
}

10.C++

函数法

sort(a,a + n);// 排序a[0]-a[n-1]的所有数.

迭代法

实例
// 参考:http://www.dutor.net/index.php/2011/04/recursive-iterative-quick-sort/
struct Range {
    int start, end;
    Range(int s = 0, int e = 0) {
        start = s, end = e;
    }
};
template <typename T> // 整數或浮點數皆可使用,若要使用物件(class)時必須設定"小於"(<)、"大於"(>)、"不小於"(>=)的運算子功能
void quick_sort(T arr[], const int len) {
    if (len <= 0)
        return; // 避免len等於負值時宣告堆疊陣列當機
    // r[]模擬堆疊,p為數量,r[p++]為push,r[--p]為pop且取得元素
    Range r[len];
    int p = 0;
    r[p++] = Range(0, len - 1);
    while (p) {
        Range range = r[--p];
        if (range.start >= range.end)
            continue;
        T mid = arr[range.end];
        int left = range.start, right = range.end - 1;
        while (left < right) {
            while (arr[left] < mid && left < right) left++;
            while (arr[right] >= mid && left < right) right--;
            std::swap(arr[left], arr[right]);
        }
        if (arr[left] >= arr[range.end])
            std::swap(arr[left], arr[range.end]);
        else
            left++;
        r[p++] = Range(range.start, left - 1);
        r[p++] = Range(left + 1, range.end);
    }
}

递归法

实例
template <typename T>
void quick_sort_recursive(T arr[], int start, int end) {
    if (start >= end)
        return;
    T mid = arr[end];
    int left = start, right = end - 1;
    while (left < right) { //在整个范围内搜寻比枢纽元值小或大的元素,然后将左侧元素与右侧元素交换
        while (arr[left] < mid && left < right) //试图在左侧找到一个比枢纽元更大的元素
            left++;
        while (arr[right] >= mid && left < right) //试图在右侧找到一个比枢纽元更小的元素
            right--;
        std::swap(arr[left], arr[right]); //交换元素
    }
    if (arr[left] >= arr[end])
        std::swap(arr[left], arr[end]);
    else
        left++;
    quick_sort_recursive(arr, start, left - 1);
    quick_sort_recursive(arr, left + 1, end);
}
template <typename T> //整數或浮點數皆可使用,若要使用物件(class)時必須設定"小於"(<)、"大於"(>)、"不小於"(>=)的運算子功能
void quick_sort(T arr[], int len) {
    quick_sort_recursive(arr, 0, len - 1);
}

11.C#

实例
//快速排序(目标数组,数组的起始位置,数组的终止位置)
static void QuickSort(int[] array, int left = 0, int right = -1)
{
    if (right.Equals(-1)) right = array.Length - 1;
    try
    {
        int keyValuePosition;   //记录关键值的下标
        //当传递的目标数组含有两个以上的元素时,进行递归调用。(即:当传递的目标数组只含有一个元素时,此趟排序结束)
        if (left < right)
        {
            keyValuePosition = Partion(array, left, right);  //获取关键值的下标(快排的核心)
            QuickSort(array, left, keyValuePosition - 1);    //递归调用,快排划分出来的左区间
            QuickSort(array, keyValuePosition + 1, right);   //递归调用,快排划分出来的右区间
        }
    }
    catch (Exception ex)
    {
        Console.WriteLine("Exception: {0}", ex);
    }
}

///快速排序的核心部分:确定关键值在数组中的位置,以此将数组划分成左右两区间,关键值游离在外。(返回关键值应在数组中的下标)
static int Partion(int[] array, int left, int right)
{
    int leftIndex = left;        //记录目标数组的起始位置(后续动态的左侧下标)
    int rightIndex = right;      //记录目标数组的结束位置(后续动态的右侧下标)
    int keyValue = array[left];  //数组的第一个元素作为关键值
    int temp;
    //当 (左侧动态下标 == 右侧动态下标) 时跳出循环
    while (leftIndex < rightIndex)
    {
        while (leftIndex < rightIndex && array[leftIndex] <= keyValue)  //左侧动态下标逐渐增加,直至找到大于keyValue的下标
        {
            leftIndex++;
        }
        while (leftIndex < rightIndex && array[rightIndex] > keyValue)  //右侧动态下标逐渐减小,直至找到小于或等于keyValue的下标
        {
            rightIndex--;
        }
        if (leftIndex < rightIndex)  //如果leftIndex < rightIndex,则交换左右动态下标所指定的值;当leftIndex==rightIndex时,跳出整个循环
        {
            temp = array[leftIndex];
            array[leftIndex] = array[rightIndex];
            array[rightIndex] = temp;
        }
    }

    //当左右两个动态下标相等时(即:左右下标指向同一个位置),此时便可以确定keyValue的准确位置
    temp = keyValue;
    if (temp < array[rightIndex])   //当keyValue < 左右下标同时指向的值,将keyValue与rightIndex - 1指向的值交换,并返回rightIndex - 1
    {
        array[left] = array[rightIndex - 1];
        array[rightIndex - 1] = temp;
        return rightIndex - 1;
    }
    else //当keyValue >= 左右下标同时指向的值,将keyValue与rightIndex指向的值交换,并返回rightIndex
    {
        array[left] = array[rightIndex];
        array[rightIndex] = temp;
        return rightIndex;
    }
}

11.scala

实例
/**  
* @Auther: huowang 
* @Date: 19:34:47 2020/12/10  
* @DES:  分区交换算法(快速排序发)  
* @Modified By:  
*/
object PartitionExchange {

  /**    
   * 分区内切割    
   * @param arr    
   * @param left    
   * @param right    
   * @return    
  */  
def partition(arr:Array[Int],left:Int,right: Int):Int={
    // 获取基准元素 直接选取最右侧一个元素为基准元素   
    val pv=arr(right)

    // 把最左边一个索引作为堆叠索引   
     var storeIndex=left
    //操作数组 -1是因为 最右边一个元素是基准元素  
   for (i <- left to right-1 ){
       if(arr(i)<=pv){
         //把小于基准元素的元素 都堆到集合左端        
          swap(arr,storeIndex,i)
         // 把用于堆叠索引往前移动一个  
          storeIndex=storeIndex+1 
      }
      //如果出现了比基准元素大的元素,那么则不会移动堆叠索引  
      // 但是如果之后又出现了比基准元素小的元素,那边会与这个大的元素交换位置
      // 进而使大的元素永远出现在堆叠索引右侧
    }
    // 这里最有右的元素,其实是基准元素,我们把基准元素和最后堆叠索引对应的元素调换位置
    // 这样基准元素左边就都是大于它的元素了  
     swap(arr,right,storeIndex)
    // 返回堆叠索引位置,目前堆叠索引指向的就是基准元素 
     storeIndex
  }

def quicksort(arr:Array[Int],left: Int,right: Int):Array[Int]={

    if(right>left){
      // 左右索引不重合 
     // 随便选择一个元素作为基准 就选择最左边的吧 
     var pivotIndex=0 
     // 切割返回基准元素 
     pivotIndex= partition(arr,left,right)
      // 递归对切割形成的两个子集进行排序 
      quicksort(arr,left,pivotIndex-1)
      quicksort(arr,pivotIndex,right)
    }
    arr
  }


  /**    
    * 调换 a b 元素在数组中的位置    
    * @param arr    
    * @param a    
    * @param b    
    */  
def swap(arr:Array[Int],a:Int,b:Int)={
    val tmp=arr(a)
    arr(a)=arr(b)
    arr(b)=tmp
  }

def main(args: Array[String]): Unit = {
    // 测试
    val arr=Array(5, 2, 9,11,3,6,8,4,0,0)
    val arrNew=quicksort(arr,0,arr.size-1)
    println(arrNew.toList.mkString(","))

  }
}

1.7 堆排序

分类 算法

堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。堆排序可以说是一种利用堆的概念来排序的选择排序。分为两种方法:

  1. 大顶堆:每个节点的值都大于或等于其子节点的值,在堆排序算法中用于升序排列;
  2. 小顶堆:每个节点的值都小于或等于其子节点的值,在堆排序算法中用于降序排列;

堆排序的平均时间复杂度为 Ο(nlogn)。

1. 算法步骤

  1. 创建一个堆 H[0……n-1];
  2. 把堆首(最大值)和堆尾互换;
  3. 把堆的尺寸缩小 1,并调用 shift_down(0),目的是把新的数组顶端数据调整到相应位置;
  4. 重复步骤 2,直到堆的尺寸为 1。

2. 动图演示

img

img

2.JavaScript

实例
var len;    // 因为声明的多个函数都需要数据长度,所以把len设置成为全局变量

function buildMaxHeap(arr) {   // 建立大顶堆
     len = arr.length;
     for (var i = Math.floor(len/2); i >= 0; i--) {
         heapify(arr, i);
     }
}

function heapify(arr, i) {     // 堆调整
     var left = 2 * i + 1,
         right = 2 * i + 2,
         largest = i;

     if (left < len && arr[left] > arr[largest]) {
         largest = left;
     }

     if (right < len && arr[right] > arr[largest]) {
         largest = right;
     }

     if (largest != i) {
         swap(arr, i, largest);
         heapify(arr, largest);
     }
}

function swap(arr, i, j) {
     var temp = arr[i];
     arr[i] = arr[j];
     arr[j] = temp;
}

function heapSort(arr) {
     buildMaxHeap(arr);

     for (var i = arr.length-1; i > 0; i--) {
         swap(arr, 0, i);
         len--;
         heapify(arr, 0);
     }
     return arr;
}

4.Python

实例
def buildMaxHeap(arr):
     import math
     for i in range(math.floor(len(arr)/2),-1,-1):
         heapify(arr,i)

def heapify(arr, i):
     left = 2*i+1
     right = 2*i+2
     largest = i
     if left < arrLen and arr[left] > arr[largest]:
         largest = left
     if right < arrLen and arr[right] > arr[largest]:
         largest = right

     if largest != i:
         swap(arr, i, largest)
         heapify(arr, largest)

def swap(arr, i, j):
     arr[i], arr[j] = arr[j], arr[i]

def heapSort(arr):
     global arrLen
     arrLen = len(arr)
     buildMaxHeap(arr)
     for i in range(len(arr)-1,0,-1):
         swap(arr,0,i)
         arrLen -=1
         heapify(arr, 0)
     return arr

50Go

实例
func heapSort(arr []int) []int {
         arrLen := len(arr)
         buildMaxHeap(arr, arrLen)
         for i := arrLen - 1; i >= 0; i-- {
                 swap(arr, 0, i)
                 arrLen -= 1
                 heapify(arr, 0, arrLen)
         }
         return arr
}

func buildMaxHeap(arr []int, arrLen int) {
         for i := arrLen / 2; i >= 0; i-- {
                 heapify(arr, i, arrLen)
         }
}

func heapify(arr []int, i, arrLen int) {
         left := 2*i + 1
         right := 2*i + 2
         largest := i
         if left < arrLen && arr[left] > arr[largest] {
                 largest = left
         }
         if right < arrLen && arr[right] > arr[largest] {
                 largest = right
         }
         if largest != i {
                 swap(arr, i, largest)
                 heapify(arr, largest, arrLen)
         }
}

func swap(arr []int, i, j int) {
         arr[i], arr[j] = arr[j], arr[i]
}

6. Java

实例
public class HeapSort implements IArraySort {

     @Override
     public int[] sort(int[] sourceArray) throws Exception {
         // 对 arr 进行拷贝,不改变参数内容
         int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);

         int len = arr.length;

         buildMaxHeap(arr, len);

         for (int i = len - 1; i > 0; i--) {
             swap(arr, 0, i);
             len--;
             heapify(arr, 0, len);
         }
         return arr;
     }

     private void buildMaxHeap(int[] arr, int len) {
         for (int i = (int) Math.floor(len / 2); i >= 0; i--) {
             heapify(arr, i, len);
         }
     }

     private void heapify(int[] arr, int i, int len) {
         int left = 2 * i + 1;
         int right = 2 * i + 2;
         int largest = i;

         if (left < len && arr[left] > arr[largest]) {
             largest = left;
         }

         if (right < len && arr[right] > arr[largest]) {
             largest = right;
         }

         if (largest != i) {
             swap(arr, i, largest);
             heapify(arr, largest, len);
         }
     }

     private void swap(int[] arr, int i, int j) {
         int temp = arr[i];
         arr[i] = arr[j];
         arr[j] = temp;
     }

}

7.PHP

实例
function buildMaxHeap(&$arr)
{
     global $len;
     for ($i = floor($len/2); $i >= 0; $i--) {
         heapify($arr, $i);
     }
}

function heapify(&$arr, $i)
{
     global $len;
     $left = 2 * $i + 1;
     $right = 2 * $i + 2;
     $largest = $i;

     if ($left < $len && $arr[$left] > $arr[$largest]) {
         $largest = $left;
     }

     if ($right < $len && $arr[$right] > $arr[$largest]) {
         $largest = $right;
     }

     if ($largest != $i) {
         swap($arr, $i, $largest);
         heapify($arr, $largest);
     }
}

function swap(&$arr, $i, $j)
{
     $temp = $arr[$i];
     $arr[$i] = $arr[$j];
     $arr[$j] = $temp;
}

function heapSort($arr) {
     global $len;
     $len = count($arr);
     buildMaxHeap($arr);
     for ($i = count($arr) - 1; $i > 0; $i--) {
         swap($arr, 0, $i);
         $len--;
         heapify($arr, 0);
     }
     return $arr;
}

8.C

实例
#include <stdio.h>
#include <stdlib.h>

void swap(int *a, int *b) {
     int temp = *b;
     *b = *a;
     *a = temp;
}

void max_heapify(int arr[], int start, int end) {
     // 建立父節點指標和子節點指標
     int dad = start;
     int son = dad * 2 + 1;
     while (son <= end) { // 若子節點指標在範圍內才做比較
         if (son + 1 <= end && arr[son] < arr[son + 1]) // 先比較兩個子節點大小,選擇最大的
             son++;
         if (arr[dad] > arr[son]) //如果父節點大於子節點代表調整完畢,直接跳出函數
             return;
         else { // 否則交換父子內容再繼續子節點和孫節點比較
             swap(&arr[dad], &arr[son]);
             dad = son;
             son = dad * 2 + 1;
         }
     }
}

void heap_sort(int arr[], int len) {
     int i;
     // 初始化,i從最後一個父節點開始調整
     for (i = len / 2 - 1; i >= 0; i--)
         max_heapify(arr, i, len - 1);
     // 先將第一個元素和已排好元素前一位做交換,再重新調整,直到排序完畢
     for (i = len - 1; i > 0; i--) {
         swap(&arr[0], &arr[i]);
         max_heapify(arr, 0, i - 1);
     }
}

int main() {
     int arr[] = { 3, 5, 3, 0, 8, 6, 1, 5, 8, 6, 2, 4, 9, 4, 7, 0, 1, 8, 9, 7, 3, 1, 2, 5, 9, 7, 4, 0, 2, 6 };
     int len = (int) sizeof(arr) / sizeof(*arr);
     heap_sort(arr, len);
     int i;
     for (i = 0; i < len; i++)
         printf("%d ", arr[i]);
     printf("\n");
     return 0;
}

9.C++

实例
#include <iostream>
#include <algorithm>
using namespace std;

void max_heapify(int arr[], int start, int end) {
​     // 建立父節點指標和子節點指標
​     int dad = start;
​     int son = dad * 2 + 1;
​     while (son <= end) { // 若子節點指標在範圍內才做比較
​         if (son + 1 <= end && arr[son] < arr[son + 1]) // 先比較兩個子節點大小,選擇最大的
​             son++;
​         if (arr[dad] > arr[son]) // 如果父節點大於子節點代表調整完畢,直接跳出函數
​             return;
​         else { // 否則交換父子內容再繼續子節點和孫節點比較
​             swap(arr[dad], arr[son]);
​             dad = son;
​             son = dad * 2 + 1;
​         }
​     }
}

void heap_sort(int arr[], int len) {
​     // 初始化,i從最後一個父節點開始調整
​     for (int i = len / 2 - 1; i >= 0; i--)
​         max_heapify(arr, i, len - 1);
​     // 先將第一個元素和已经排好的元素前一位做交換,再從新調整(刚调整的元素之前的元素),直到排序完畢
​     for (int i = len - 1; i > 0; i--) {
​         swap(arr[0], arr[i]);
​         max_heapify(arr, 0, i - 1);
​     }
}

int main() {
​     int arr[] = { 3, 5, 3, 0, 8, 6, 1, 5, 8, 6, 2, 4, 9, 4, 7, 0, 1, 8, 9, 7, 3, 1, 2, 5, 9, 7, 4, 0, 2, 6 };
​     int len = (int) sizeof(arr) / sizeof(*arr);
​     heap_sort(arr, len);
​     for (int i = 0; i < len; i++)
​         cout << arr[i] << ' ';
​     cout << endl;
​     return 0;
}

9.C#

实例
/// <summary>
/// 堆排序
/// </summary>
/// <param name="arr">待排序数组</param>
static void HeapSort(int[] arr)
{
    int vCount = arr.Length;
    int[] tempKey = new int[vCount + 1];
    // 元素索引从1开始
    for (int i = 0; i < vCount; i++)
    {
        tempKey[i + 1] = arr[i];
    }
    // 初始数据建堆(从含最后一个结点的子树开始构建,依次向前,形成整个二叉堆)
    for (int i = vCount / 2; i >= 1; i--)
    {
        Restore(tempKey, i, vCount);
    }
    // 不断输出堆顶元素、重构堆,进行排序
    for (int i = vCount; i > 1; i--)
    {
        int temp = tempKey[i];
        tempKey[i] = tempKey[1];
        tempKey[1] = temp;
        Restore(tempKey, 1, i - 1);
    }
    //排序结果
    for (int i = 0; i < vCount; i++)
    {
        arr[i] = tempKey[i + 1];
    }
}
/// <summary>
/// 二叉堆的重构(针对于已构建好的二叉堆首尾互换之后的重构)
/// </summary>
/// <param name="arr"></param>
/// <param name="rootNode">根结点j</param>
/// <param name="nodeCount">结点数</param>
static void Restore(int[] arr, int rootNode, int nodeCount)
{
    while (rootNode <= nodeCount / 2) // 保证根结点有子树
    {
        //找出左右儿子的最大值
        int m = (2 * rootNode + 1 <= nodeCount && arr[2 * rootNode + 1] > arr[2 * rootNode]) ? 2 * rootNode + 1 : 2 * rootNode;
        if (arr[m] > arr[rootNode])
        {
            int temp = arr[m];
            arr[m] = arr[rootNode];
            arr[rootNode] = temp;
            rootNode = m;
        }
        else
        {
            break;
        }
    }
}

1.8 计数排序

分类 算法

计数排序的核心在于将输入的数据值转化为键存储在额外开辟的数组空间中。作为一种线性时间复杂度的排序,计数排序要求输入的数据必须是有确定范围的整数。

1.计数排序的特征

当输入的元素是 n 个 0 到 k 之间的整数时,它的运行时间是 Θ(n + k)。计数排序不是比较排序,排序的速度快于任何比较排序算法。

由于用来计数的数组C的长度取决于待排序数组中数据的范围(等于待排序数组的最大值与最小值的差加上1),这使得计数排序对于数据范围很大的数组,需要大量时间和内存。例如:计数排序是用来排序0到100之间的数字的最好的算法,但是它不适合按字母顺序排序人名。但是,计数排序可以用在基数排序中的算法来排序数据范围很大的数组。

通俗地理解,例如有 10 个年龄不同的人,统计出有 8 个人的年龄比 A 小,那 A 的年龄就排在第 9 位,用这个方法可以得到其他每个人的位置,也就排好了序。当然,年龄有重复时需要特殊处理(保证稳定性),这就是为什么最后要反向填充目标数组,以及将每个数字的统计减去 1 的原因。

算法的步骤如下:

  • (1)找出待排序的数组中最大和最小的元素
  • (2)统计数组中每个值为i的元素出现的次数,存入数组C的第i项
  • (3)对所有的计数累加(从C中的第一个元素开始,每一项和前一项相加)
  • (4)反向填充目标数组:将每个元素i放在新数组的第C(i)项,每放一个元素就将C(i)减去1

2. 动图演示

img

3.JavaScript

实例
function countingSort(arr, maxValue) {
     var bucket = new Array(maxValue+1),
         sortedIndex = 0;
         arrLen = arr.length,
         bucketLen = maxValue + 1;

     for (var i = 0; i < arrLen; i++) {
         if (!bucket[arr[i]]) {
             bucket[arr[i]] = 0;
         }
         bucket[arr[i]]++;
     }

     for (var j = 0; j < bucketLen; j++) {
         while(bucket[j] > 0) {
             arr[sortedIndex++] = j;
             bucket[j]--;
         }
     }

     return arr;
}

4.Python

实例
def countingSort(arr, maxValue):
    bucketLen = maxValue+1
    bucket = [0]*bucketLen
    sortedIndex =0
    arrLen = len(arr)
    for i in range(arrLen):
        if not bucket[arr[i]]:
            bucket[arr[i]]=0
        bucket[arr[i]]+=1
    for j in range(bucketLen):
        while bucket[j]>0:
            arr[sortedIndex] = j
            sortedIndex+=1
            bucket[j]-=1
    return arr

5.Go

实例
func countingSort(arr []int, maxValue int) []int {
         bucketLen := maxValue + 1
         bucket := make([]int, bucketLen) // 初始为0的数组

         sortedIndex := 0
         length := len(arr)

         for i := 0; i < length; i++ {
                 bucket[arr[i]] += 1
         }

         for j := 0; j < bucketLen; j++ {
                 for bucket[j] > 0 {
                         arr[sortedIndex] = j
                         sortedIndex += 1
                         bucket[j] -= 1
                 }
         }

         return arr
}

6.Java

实例
public class CountingSort implements IArraySort {

     @Override
     public int[] sort(int[] sourceArray) throws Exception {
         // 对 arr 进行拷贝,不改变参数内容
         int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);

         int maxValue = getMaxValue(arr);

         return countingSort(arr, maxValue);
     }

     private int[] countingSort(int[] arr, int maxValue) {
         int bucketLen = maxValue + 1;
         int[] bucket = new int[bucketLen];

         for (int value : arr) {
             bucket[value]++;
         }

         int sortedIndex = 0;
         for (int j = 0; j < bucketLen; j++) {
             while (bucket[j] > 0) {
                 arr[sortedIndex++] = j;
                 bucket[j]--;
             }
         }
         return arr;
     }

     private int getMaxValue(int[] arr) {
         int maxValue = arr[0];
         for (int value : arr) {
             if (maxValue < value) {
                 maxValue = value;
             }
         }
         return maxValue;
     }

}

7.PHP

实例
function countingSort($arr, $maxValue = null)
{
     if ($maxValue === null) {
         $maxValue = max($arr);
     }
     for ($m = 0; $m < $maxValue + 1; $m++) {
         $bucket[] = null;
     }

     $arrLen = count($arr);
     for ($i = 0; $i < $arrLen; $i++) {
         if (!array_key_exists($arr[$i], $bucket)) {
             $bucket[$arr[$i]] = 0;
         }
         $bucket[$arr[$i]]++;
     }

     $sortedIndex = 0;
     foreach ($bucket as $key => $len) {
         if ($len !== null) $arr[$sortedIndex++] = $key;
         if($len !== null){
             for($j = 0; $j < $len; $j++){
                 $arr[$sortedIndex++] = $key;
             }
         }
     }

     return $arr;
}

8.C

实例
\#include <stdio.h>
\#include <stdlib.h>
\#include <time.h>

void print_arr(int *arr, int n) {
         int i;
         printf("%d", arr[0]);
         for (i = 1; i < n; i++)
                 printf(" %d", arr[i]);
         printf("\n");
}

void counting_sort(int *ini_arr, int *sorted_arr, int n) {
         int *count_arr = (int *) malloc(sizeof(int) * 100);
         int i, j, k;
         for (k = 0; k < 100; k++)
                 count_arr[k] = 0;
         for (i = 0; i < n; i++)
                 count_arr[ini_arr[i]]++;
         for (k = 1; k < 100; k++)
                 count_arr[k] += count_arr[k - 1];
         for (j = n; j > 0; j--)
                 sorted_arr[--count_arr[ini_arr[j - 1]]] = ini_arr[j - 1];
         free(count_arr);
}

int main(int argc, char **argv) {
         int n = 10;
         int i;
         int *arr = (int *) malloc(sizeof(int) * n);
         int *sorted_arr = (int *) malloc(sizeof(int) * n);
         srand(time(0));
         for (i = 0; i < n; i++)
                 arr[i] = rand() % 100;
         printf("ini_array: ");
         print_arr(arr, n);
         counting_sort(arr, sorted_arr, n);
         printf("sorted_array: ");
         print_arr(sorted_arr, n);
         free(arr);
         free(sorted_arr);
         return 0;
}

1.9 桶排序

分类 算法

桶排序是计数排序的升级版。它利用了函数的映射关系,高效与否的关键就在于这个映射函数的确定。为了使桶排序更加高效,我们需要做到这两点:

  1. 在额外空间充足的情况下,尽量增大桶的数量
  2. 使用的映射函数能够将输入的 N 个数据均匀的分配到 K 个桶中

同时,对于桶中元素的排序,选择何种比较排序算法对于性能的影响至关重要。

1. 什么时候最快

当输入的数据可以均匀的分配到每一个桶中。

2. 什么时候最慢

当输入的数据被分配到了同一个桶中。

3. 示意图

元素分布在桶中:

img

然后,元素在每个桶中排序:

img

4.JavaScript

实例
function bucketSort(arr, bucketSize) {
     if (arr.length === 0) {
       return arr;
     }

     var i;
     var minValue = arr[0];
     var maxValue = arr[0];
     for (i = 1; i < arr.length; i++) {
       if (arr[i] < minValue) {
           minValue = arr[i];                // 输入数据的最小值
       } else if (arr[i] > maxValue) {
           maxValue = arr[i];                // 输入数据的最大值
       }
     }

     //桶的初始化
     var DEFAULT_BUCKET_SIZE = 5;            // 设置桶的默认数量为5
     bucketSize = bucketSize || DEFAULT_BUCKET_SIZE;
     var bucketCount = Math.floor((maxValue - minValue) / bucketSize) + 1;  
     var buckets = new Array(bucketCount);
     for (i = 0; i < buckets.length; i++) {
         buckets[i] = [];
     }

     //利用映射函数将数据分配到各个桶中
     for (i = 0; i < arr.length; i++) {
         buckets[Math.floor((arr[i] - minValue) / bucketSize)].push(arr[i]);
     }

     arr.length = 0;
     for (i = 0; i < buckets.length; i++) {
         insertionSort(buckets[i]);                      // 对每个桶进行排序,这里使用了插入排序
         for (var j = 0; j < buckets[i].length; j++) {
             arr.push(buckets[i][j]);                      
         }
     }

     return arr;
}

5.Java

实例
public class BucketSort implements IArraySort {

     private static final InsertSort insertSort = new InsertSort();

     @Override
     public int[] sort(int[] sourceArray) throws Exception {
         // 对 arr 进行拷贝,不改变参数内容
         int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);

         return bucketSort(arr, 5);
     }

     private int[] bucketSort(int[] arr, int bucketSize) throws Exception {
         if (arr.length == 0) {
             return arr;
         }

         int minValue = arr[0];
         int maxValue = arr[0];
         for (int value : arr) {
             if (value < minValue) {
                 minValue = value;
             } else if (value > maxValue) {
                 maxValue = value;
             }
         }

         int bucketCount = (int) Math.floor((maxValue - minValue) / bucketSize) + 1;
         int[][] buckets = new int[bucketCount][0];

         // 利用映射函数将数据分配到各个桶中
         for (int i = 0; i < arr.length; i++) {
             int index = (int) Math.floor((arr[i] - minValue) / bucketSize);
             buckets[index] = arrAppend(buckets[index], arr[i]);
         }

         int arrIndex = 0;
         for (int[] bucket : buckets) {
             if (bucket.length <= 0) {
                 continue;
             }
             // 对每个桶进行排序,这里使用了插入排序
             bucket = insertSort.sort(bucket);
             for (int value : bucket) {
                 arr[arrIndex++] = value;
             }
         }

         return arr;
     }

     /**
      \* 自动扩容,并保存数据
      *
      \* @param arr
      \* @param value
      */
     private int[] arrAppend(int[] arr, int value) {
         arr = Arrays.copyOf(arr, arr.length + 1);
         arr[arr.length - 1] = value;
         return arr;
     }

}

6.PHP

实例
function bucketSort($arr, $bucketSize = 5)
{
     if (count($arr) === 0) {
       return $arr;
     }

     $minValue = $arr[0];
     $maxValue = $arr[0];
     for ($i = 1; $i < count($arr); $i++) {
       if ($arr[$i] < $minValue) {
           $minValue = $arr[$i];
       } else if ($arr[$i] > $maxValue) {
           $maxValue = $arr[$i];
       }
     }

     $bucketCount = floor(($maxValue - $minValue) / $bucketSize) + 1;
     $buckets = array();
     for ($i = 0; $i < count($buckets); $i++) {
         $buckets[$i] = [];
     }

     for ($i = 0; $i < count($arr); $i++) {
         $buckets[floor(($arr[$i] - $minValue) / $bucketSize)][] = $arr[$i];
     }

     $arr = array();
     for ($i = 0; $i < count($buckets); $i++) {
         $bucketTmp = $buckets[$i];
         sort($bucketTmp);
         for ($j = 0; $j < count($bucketTmp); $j++) {
             $arr[] = $bucketTmp[$j];
         }
     }

     return $arr;
}

7.C++

实例
\#include<iterator>
\#include<iostream>
\#include<vector>
using namespace std;
const int BUCKET_NUM = 10;

struct ListNode{
         explicit ListNode(int i=0):mData(i),mNext(NULL){}
         ListNode* mNext;
         int mData;
};

ListNode* insert(ListNode* head,int val){
         ListNode dummyNode;
         ListNode *newNode = new ListNode(val);
         ListNode *pre,*curr;
         dummyNode.mNext = head;
         pre = &dummyNode;
         curr = head;
         while(NULL!=curr && curr->mData<=val){
                 pre = curr;
                 curr = curr->mNext;
         }
         newNode->mNext = curr;
         pre->mNext = newNode;
         return dummyNode.mNext;
}


ListNode* Merge(ListNode *head1,ListNode *head2){
         ListNode dummyNode;
         ListNode *dummy = &dummyNode;
         while(NULL!=head1 && NULL!=head2){
                 if(head1->mData <= head2->mData){
                         dummy->mNext = head1;
                         head1 = head1->mNext;
                 }else{
                         dummy->mNext = head2;
                         head2 = head2->mNext;
                 }
                 dummy = dummy->mNext;
         }
         if(NULL!=head1) dummy->mNext = head1;
         if(NULL!=head2) dummy->mNext = head2;
        
         return dummyNode.mNext;
}

void BucketSort(int n,int arr[]){
         vector<ListNode*> buckets(BUCKET_NUM,(ListNode*)(0));
         for(int i=0;i<n;++i){
                 int index = arr[i]/BUCKET_NUM;
                 ListNode *head = buckets.at(index);
                 buckets.at(index) = insert(head,arr[i]);
         }
         ListNode *head = buckets.at(0);
         for(int i=1;i<BUCKET_NUM;++i){
                 head = Merge(head,buckets.at(i));
         }
         for(int i=0;i<n;++i){
                 arr[i] = head->mData;
                 head = head->mNext;
         }
}

7.C#

实例
static void BucketSort(List<int> list, int bucketCount, int maxBucketCount)
{
    List<List<int>> buckets = new List<List<int>>(bucketCount);//二维列表
    for (int i = 0; i < bucketCount; i++)
    {
        buckets.Add(new List<int>());
    }
    for (int i = 0; i < list.Count; i++)
    {
        // int j = Mathf.Min(list[i] / (maxBucketCount / bucketCount), bucketCount - 1);//j表示改放的哪个桶,不能大于n-1
        int j = Math.Min(list[i] / (maxBucketCount / bucketCount), bucketCount - 1);//j表示改放的哪个桶,不能大于n-1
        buckets[j].Add(list[i]);//放入对应桶
        for (int x = buckets[j].Count - 1; x > 0; x--)//放一个排序一次,两两对比就可以
        {
            if (buckets[j][x] < buckets[j][x - 1])//升序
            {
                int tmp = buckets[j][x];//交换
                buckets[j][x] = buckets[j][x - 1];
                buckets[j][x - 1] = tmp;
            }
            else
            {
                break;//如果不发生交换直接退出,因为前面的之前就排序好了
            }
        }
    }
    list.Clear();//输出
    for (int i = 0; i < buckets.Count; i++)
    {
        list.AddRange(buckets[i]);
    }
}

1.10 基数排序

分类 算法

基数排序是一种非比较型整数排序算法,其原理是将整数按位数切割成不同的数字,然后按每个位数分别比较。由于整数也可以表达字符串(比如名字或日期)和特定格式的浮点数,所以基数排序也不是只能使用于整数。

1. 基数排序 vs 计数排序 vs 桶排序

基数排序有两种方法:

这三种排序算法都利用了桶的概念,但对桶的使用方法上有明显差异:

  • 基数排序:根据键值的每位数字来分配桶;
  • 计数排序:每个桶只存储单一键值;
  • 桶排序:每个桶存储一定范围的数值;

2. LSD 基数排序动图演示

img

3.JavaScript

实例

//LSD Radix Sort
var counter = [];
function radixSort(arr, maxDigit) {
     var mod = 10;
     var dev = 1;
     for (var i = 0; i < maxDigit; i++, dev *= 10, mod *= 10) {
         for(var j = 0; j < arr.length; j++) {
             var bucket = parseInt((arr[j] % mod) / dev);
             if(counter[bucket]==null) {
                 counter[bucket] = [];
             }
             counter[bucket].push(arr[j]);
         }
         var pos = 0;
         for(var j = 0; j < counter.length; j++) {
             var value = null;
             if(counter[j]!=null) {
                 while ((value = counter[j].shift()) != null) {
                       arr[pos++] = value;
                 }
           }
         }
     }
     return arr;
}

4.Java

实例
/**
 * 基数排序
 * 考虑负数的情况还可以参考: https://code.i-harness.com/zh-CN/q/e98fa9
    */
    public class RadixSort implements IArraySort {

    @Override
    public int[] sort(int[] sourceArray) throws Exception {
        // 对 arr 进行拷贝,不改变参数内容
        int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);

        int maxDigit = getMaxDigit(arr);
        return radixSort(arr, maxDigit);
    }

    /**
     * 获取最高位数
     */
    private int getMaxDigit(int[] arr) {
        int maxValue = getMaxValue(arr);
        return getNumLenght(maxValue);
    }

    private int getMaxValue(int[] arr) {
        int maxValue = arr[0];
        for (int value : arr) {
            if (maxValue < value) {
                maxValue = value;
            }
        }
        return maxValue;
    }

    protected int getNumLenght(long num) {
        if (num == 0) {
            return 1;
        }
        int lenght = 0;
        for (long temp = num; temp != 0; temp /= 10) {
            lenght++;
        }
        return lenght;
    }

    private int[] radixSort(int[] arr, int maxDigit) {
        int mod = 10;
        int dev = 1;

        for (int i = 0; i < maxDigit; i++, dev *= 10, mod *= 10) {
            // 考虑负数的情况,这里扩展一倍队列数,其中 [0-9]对应负数,[10-19]对应正数 (bucket + 10)
            int[][] counter = new int[mod * 2][0];

            for (int j = 0; j < arr.length; j++) {
                int bucket = ((arr[j] % mod) / dev) + mod;
                counter[bucket] = arrayAppend(counter[bucket], arr[j]);
            }

            int pos = 0;
            for (int[] bucket : counter) {
                for (int value : bucket) {
                    arr[pos++] = value;
                }
            }
        }

        return arr;
    }

    /**
     * 自动扩容,并保存数据
     *
     * @param arr
     * @param value
     */
    private int[] arrayAppend(int[] arr, int value) {
        arr = Arrays.copyOf(arr, arr.length + 1);
        arr[arr.length - 1] = value;
        return arr;
    }
}

5.PHP

实例
function radixSort($arr, $maxDigit = null)
{
     if ($maxDigit === null) {
         $maxDigit = max($arr);
     }
     $counter = [];
     for ($i = 0; $i < $maxDigit; $i++) {
         for ($j = 0; $j < count($arr); $j++) {
             preg_match_all('/\d/', (string) $arr[$j], $matches);
             $numArr = $matches[0];
             $lenTmp = count($numArr);
             $bucket = array_key_exists($lenTmp - $i - 1, $numArr)
                 ? intval($numArr[$lenTmp - $i - 1])
                 : 0;
             if (!array_key_exists($bucket, $counter)) {
                 $counter[$bucket] = [];
             }
             $counter[$bucket][] = $arr[$j];
         }
         $pos = 0;
         for ($j = 0; $j < count($counter); $j++) {
             $value = null;
             if ($counter[$j] !== null) {
                 while (($value = array_shift($counter[$j])) !== null) {
                     $arr[$pos++] = $value;
                 }
           }
         }
     }

     return $arr;
}

6.C++

实例
int maxbit(int data[], int n) //辅助函数,求数据的最大位数
{
     int maxData = data[0];              ///< 最大数
     /// 先求出最大数,再求其位数,这样有原先依次每个数判断其位数,稍微优化点。
     for (int i = 1; i < n; ++i)
     {
         if (maxData < data[i])
             maxData = data[i];
     }
     int d = 1;
     int p = 10;
     while (maxData >= p)
     {
         //p *= 10; // Maybe overflow
         maxData /= 10;
         ++d;
     }
     return d;
/*    int d = 1; //保存最大的位数
     int p = 10;
     for(int i = 0; i < n; ++i)
     {
         while(data[i] >= p)
         {
             p *= 10;
             ++d;
         }
     }
     return d;*/
}
void radixsort(int data[], int n) //基数排序
{
     int d = maxbit(data, n);
     int *tmp = new int[n];
     int *count = new int[10]; //计数器
     int i, j, k;
     int radix = 1;
     for(i = 1; i <= d; i++) //进行d次排序
     {
         for(j = 0; j < 10; j++)
             count[j] = 0; //每次分配前清空计数器
         for(j = 0; j < n; j++)
         {
             k = (data[j] / radix) % 10; //统计每个桶中的记录数
             count[k]++;
         }
         for(j = 1; j < 10; j++)
             count[j] = count[j - 1] + count[j]; //将tmp中的位置依次分配给每个桶
         for(j = n - 1; j >= 0; j--) //将所有桶中记录依次收集到tmp中
         {
             k = (data[j] / radix) % 10;
             tmp[count[k] - 1] = data[j];
             count[k]--;
         }
         for(j = 0; j < n; j++) //将临时数组的内容复制到data中
             data[j] = tmp[j];
         radix = radix * 10;
     }
     delete []tmp;
     delete []count;
}

7.C

实例
#include<stdio.h>
#define MAX 20
//#define SHOWPASS
#define BASE 10

void print(int *a, int n) {
  int i;
  for (i = 0; i < n; i++) {
    printf("%d\t", a[i]);
  }
}

void radixsort(int *a, int n) {
  int i, b[MAX], m = a[0], exp = 1;

  for (i = 1; i < n; i++) {
    if (a[i] > m) {
      m = a[i];
    }
  }

  while (m / exp > 0) {
    int bucket[BASE] = { 0 };

    for (i = 0; i < n; i++) {
      bucket[(a[i] / exp) % BASE]++;
    }

    for (i = 1; i < BASE; i++) {
      bucket[i] += bucket[i - 1];
    }

    for (i = n - 1; i >= 0; i--) {
      b[--bucket[(a[i] / exp) % BASE]] = a[i];
    }

    for (i = 0; i < n; i++) {
      a[i] = b[i];
    }

    exp *= BASE;

#ifdef SHOWPASS
    printf("\nPASS   : ");
    print(a, n);
#endif
  }
}

int main() {
  int arr[MAX];
  int i, n;

  printf("Enter total elements (n <= %d) : ", MAX);
  scanf("%d", &n);
  n = n < MAX ? n : MAX;

  printf("Enter %d Elements : ", n);
  for (i = 0; i < n; i++) {
    scanf("%d", &arr[i]);
  }

  printf("\nARRAY  : ");
  print(&arr[0], n);

  radixsort(&arr[0], n);

  printf("\nSORTED : ");
  print(&arr[0], n);
  printf("\n");

  return 0;
}

8.Lua

实例
-- 获取表中位数
local maxBit = function (tt)
     local weight = 10;      -- 十進制
     local bit = 1;
   
     for k, v in pairs(tt) do
         while v >= weight do
             weight = weight * 10;
             bit = bit + 1;  
         end
     end
     return bit;
end
-- 基数排序
local radixSort = function (tt)
     local maxbit = maxBit(tt);

     local bucket = {};
     local temp = {};
     local radix = 1;
     for i = 1, maxbit do
         for j = 1, 10 do
             bucket[j] = 0;      --- 清空桶
         end
         for k, v in pairs(tt) do
             local remainder = math.floor((v / radix)) % 10 + 1;    
             bucket[remainder] = bucket[remainder] + 1;      -- 每個桶數量自動增加1
         end
        
         for j = 2, 10 do
             bucket[j] = bucket[j - 1] + bucket[j];  -- 每个桶的数量 = 以前桶数量和 + 自个数量
         end
         -- 按照桶的位置,排序--这个是桶式排序,必须使用倒序,因为排序方法是从小到大,顺序下来,会出现大的在小的上面清空。
         for k = #tt, 1, -1 do
             local remainder = math.floor((tt[k] / radix)) % 10 + 1;
             temp[bucket[remainder]] = tt[k];
             bucket[remainder] = bucket[remainder] - 1;
         end
         for k, v in pairs(temp) do
             tt[k] = v;
         end
         radix = radix * 10;
     end
end;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

@假装很文艺的文艺青年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值