【车牌超分辨率】Super Resolution of Car Plate Images Using Generative Adversarial Networks 阅读笔记

本文介绍了使用生成对抗网络(GANs)进行车牌图像超分辨率的方法,旨在提升交通监控系统的车牌识别准确性。相较于传统的最小化均方误差(MSE)方法,提出的GANs模型结合感知损失函数,能生成更高质量的高分辨率车牌图像。实验结果显示,该方法在视觉效果上优于传统技术,如双三次插值和SRCNN。
摘要由CSDN通过智能技术生成

最近在研究文字图像的超分辨率,下载了几篇论文,准备略读一下,每篇文章写个笔记做记录。

Paper:Super Resolution of Car Plate Images Using Generative Adversarial Networks




在这里插入图片描述



Abstract

车牌识别可以用于交通监控系统,例如智能停车场管理,查找被盗车辆和自动高速公路收费。在低分辨率监视系统中,车牌文本通常难以辨认。通过将一系列LR图像处理为单个高分辨率(HR)图像,可以使用超高分辨率(SR)技术来提高车牌识别的准确率。以前的方法总是最小化均方损失(MSE),以提高峰值信噪比(PSNR)。但是,最小化均方损失会导致重建图像过于平滑。在本文中,提出了基于生成对抗网络(GAN)的超分方法,将LR图像重构为HR图像。除此之外,提出了感知损失来解决平滑问题。将基于GAN的SR生成图像的质量与现有技术(例如双三次BICUBIC,超分辨率卷积神经网络SRCNN)进行比较。结果表明,与以前的方法相比,使用基于GANs的SR重建的图像在感知质量方面取得

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值