LIS&LCS

问题描述

给定两个序列A和B。
求序列A的LIS和序列AB的LCS的长度。

注意,LIS为严格递增的,即a1<a2<…<ak(ai<=1,000,000,000)。
【输入】
第一行两个数n,m(1<=n<=5,000,1<=m<=5,000)
第二行n个数,表示序列A
第三行m个数,表示序列B
【输出】
输出一行数据ans1和ans2,分别代表序列A的LIS和序列AB的LCS的长度

问题分析

LIS,最长上升子序列,给定 n 个整数 Ai, A2,…, An,按从左到右的顺序选出尽量多的整数,组成一个上升子序列。
状态:定义 fi 表示以 Ai 为结尾的最长上升序列的方程。
初始化:f1 = 1
转移过程fi=max{fi|j<i&&Aj<Ai}+1
输出答案:max{f[i], i=1…n}
时间复杂度:O(n^2)

LCS,最长公共子序列
状态:假设 f[i][j] 为 A1, A2, …, Ai 和 B1, B2, …, Bj 的 LCS 长度
初始化:初始 f[1][0] = f[0][1] = f[0][0] = 0
转移方程:当 Ai == Bj 时,f[i][j] = f[i-1][j-1] + 1
否则 f[i][j] = max(f[i-1][j], f[i][j-1])
输出答案:f[n][m]
时间复杂度:O(nm)

#include<iostream>
#include<string.h>
using namespace std;

int a[5010],b[5010];
int d[5010],ans=0;
int dp[5010][5010];
int main()
{
    int n,m;
	cin>>n>>m;//n表示序列A,m表示序列B
	for(int i=0;i<n;i++)
	{
		cin>>a[i];
	}
	for(int j=0;j<m;j++)
	{
		cin>>b[j];
	}
	memset(d,0,sizeof(d));
	memset(dp,0,sizeof(dp));
	//LIS
	for(int i=0;i<n;i++)
	{
		d[i]=1;
	    for(int j=0;j<i;j++)
	    {
	    	if(a[j]<a[i])
	    		d[i]=max(d[i],d[j]+1);
		}
		ans=max(ans,d[i]);
	}
	for(int i=1;i<=n;i++)//LCS
	{
		for(int j=1;j<=m;j++)
		{
			if(a[i-1]==b[j-1])
				dp[i][j]=dp[i-1][j-1]+1;
			else 
				dp[i][j]=max(dp[i-1][j],dp[i][j-1]);	
		} 
	}
	cout<<ans<<" "<<dp[n][m]<<endl;	
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值