问题描述
给定两个序列A和B。
求序列A的LIS和序列AB的LCS的长度。
注意,LIS为严格递增的,即a1<a2<…<ak(ai<=1,000,000,000)。
【输入】
第一行两个数n,m(1<=n<=5,000,1<=m<=5,000)
第二行n个数,表示序列A
第三行m个数,表示序列B
【输出】
输出一行数据ans1和ans2,分别代表序列A的LIS和序列AB的LCS的长度
问题分析
LIS,最长上升子序列,给定 n 个整数 Ai, A2,…, An,按从左到右的顺序选出尽量多的整数,组成一个上升子序列。
状态:定义 fi 表示以 Ai 为结尾的最长上升序列的方程。
初始化:f1 = 1
转移过程fi=max{fi|j<i&&Aj<Ai}+1
输出答案:max{f[i], i=1…n}
时间复杂度:O(n^2)
LCS,最长公共子序列
状态:假设 f[i][j] 为 A1, A2, …, Ai 和 B1, B2, …, Bj 的 LCS 长度
初始化:初始 f[1][0] = f[0][1] = f[0][0] = 0
转移方程:当 Ai == Bj 时,f[i][j] = f[i-1][j-1] + 1
否则 f[i][j] = max(f[i-1][j], f[i][j-1])
输出答案:f[n][m]
时间复杂度:O(nm)
#include<iostream>
#include<string.h>
using namespace std;
int a[5010],b[5010];
int d[5010],ans=0;
int dp[5010][5010];
int main()
{
int n,m;
cin>>n>>m;//n表示序列A,m表示序列B
for(int i=0;i<n;i++)
{
cin>>a[i];
}
for(int j=0;j<m;j++)
{
cin>>b[j];
}
memset(d,0,sizeof(d));
memset(dp,0,sizeof(dp));
//LIS
for(int i=0;i<n;i++)
{
d[i]=1;
for(int j=0;j<i;j++)
{
if(a[j]<a[i])
d[i]=max(d[i],d[j]+1);
}
ans=max(ans,d[i]);
}
for(int i=1;i<=n;i++)//LCS
{
for(int j=1;j<=m;j++)
{
if(a[i-1]==b[j-1])
dp[i][j]=dp[i-1][j-1]+1;
else
dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
}
}
cout<<ans<<" "<<dp[n][m]<<endl;
}