五种作物病害综合图像数据集:玉米、马铃薯、水稻、小麦与甘蔗

目录

前言

数据集基本介绍

五种作物具体数量情况

玉米植物种类(总图像数:3852 张图像)

马铃薯植物种类(总图像数:2152 张图像)

水稻植物种类(总图像数:4078张图像)

小麦植物种类(总图像数:2942 张图像)

甘蔗植物种类(总图像数:300张图像)

总结

数据集获取


前言

在农业生产里,作物病害严重影响产量与品质。传统病害检测依赖人工,效率与准确性欠佳。随着计算机视觉和深度学习兴起,基于图像的作物病害自动识别成为重要研究方向。

本数据集聚焦玉米、马铃薯、水稻、小麦和甘蔗五种作物,涵盖 17 种病害类别及健康状态,共 13324 张图像。图像采集自多个公开数据集,经整理标注,确保多样性与可靠性。其旨在为作物病害识别研究提供丰富资源,助力开展各类深度学习算法研究,提升病害识别准确率与效率,为农业生产智能化提供有力支撑,推动农业可持续发展。

数据集基本介绍

五种作物名称:玉米、马铃薯、水稻、小麦、甘蔗

图像总数 :13324张

类标签数量:17种

类标签名:

玉米 - 普通锈病(Corn___Common_Rust)、玉米 - 灰斑病(Corn___Gray_Leaf_Spot)、玉米 - 健康(Corn___Healthy)、玉米 - 北方叶枯病(Corn___Northern_Leaf_Blight)、马铃薯 - 早疫病(Potato___Early_Blight)、马铃薯 - 健康(Potato___Healthy)、马铃薯 - 晚疫病(Potato___Late_Blight)、水稻 - 褐斑病(Rice___Brown_Spot)、水稻 - 健康(Rice___Healthy)、水稻 - 叶瘟病(Rice___Leaf_Blast)、水稻 - 颈瘟病(Rice___Neck_Blast)、小麦 - 褐锈病(Wheat___Brown_Rust)、小麦 - 健康(Wheat___Healthy)、小麦 - 黄锈病(Wheat___Yellow_Rust)、甘蔗 - 红腐病(Sugarcane__Red_Rot)、甘蔗 - 健康(Sugarcane__Healthy)、甘蔗 - 细菌性枯萎病(Sugarcane__Bacterial Blight)。

五种作物具体数量情况

玉米植物种类(总图像数:3852 张图像)

  • Common Rust 普通锈病(1192 张图像)

  • Gray Leaf Spot 灰斑病(513 张图像)

  • Healthy 健康(1162 张图像)

  • Northern Leaf Blight 北方叶枯病(985 张图像)

马铃薯植物种类(总图像数:2152 张图像)

  • Early Blight  早疫病(1000 张图像)

  • Healthy  健康(152 张图像)

  • Late Blight  晚疫病(1000 张图像)

水稻植物种类(总图像数:4078张图像)

  • Brown Spot  褐斑病(613 张图像)

  • Healthy  健康(1488 张图像)

  • Leaf Blast  叶瘟病(977 张图像)

  • Neck Blast 颈瘟病(1000 张图像)

小麦植物种类(总图像数:2942 张图像)

  • Brown Rust  褐锈病(902 张图像)

  • Healthy  健康(1116 张图像)

  • Yellow Rust  黄锈病(924 张图像)

甘蔗植物种类(总图像数:300张图像)

  • Red Rot  红腐病(100 张图像)

  • Healthy  健康(100 张图像)

  • Bacterial Blight 细菌性枯萎病(100 张图像)

总结

本五种作物病害图像数据集,涵盖玉米等作物 17 种病害及健康状态,共 13324 张图像,来源可靠、类型多样。数据集可用于作物病害识别算法开发、监测系统构建等,借助深度学习技术能实现病害快速准确识别,为农业生产者提供预警与防治建议,减少损失、提高产量。不过,部分病害类别图像数量较少,可能影响模型泛化能力。未来会持续完善扩展数据集,增加样本,提升质量与实用性,为作物病害识别研究发挥更大价值。

数据集获取

有偿,需要的请私信或访问下文链接

五种作物病害综合图像数据集:玉米、马铃薯、水稻、小麦与甘蔗

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值