洛谷 P4306 [JSOI2010]连通数(Tarjan)

题目描述
度量一个有向图恋情情况的一个指标是连通,指途中可达点对的个数。

下图的连通数是14

在这里插入图片描述

现在要你求出连通数

输入格式:

输入数据第一行是图顶点的数量,一个正整数 N N N。 接下来 N N N行,每行 N N N个字符。第 i i i行第 j j j 列的 1 1 1表示顶点 i i i j j j有边, 0 0 0则表示无边。

输出格式:

输出一行一个整数,表示该图的连通数。

输入样例#1:
3
010
001
100
输出样例#1:
9
输入样例#2:
5
01100
00101
00011
00000
00000
输入样例#2:
14

思路

这个图让我们求联通数,一个点如果能到达另一个点,这说明这两个点联通(包括同一个点)。 因为一个环内的点一定可以互相到达,所以我们考虑Tarjan缩点。

缩完点之后图变成了一个DAG(有向无环图)。我们就可以 O ( n 2 ) O(n^2) On2 来统计答案。

我们枚举起点,然后从起点开始遍历。这样找到的点对一定是不重复的(因为起点不同)。 设缩完点后点的大小为 s z [ i ] sz[i] sz[i],从这个点往下可以走到的点数为 n u b [ i ] nub[i] nub[i]
则这个点对答案的贡献为
s z [ i ] ∗ s z [ i ] + s z [ i ] ∗ n u b [ i ] sz[i] *sz[i] + sz[i] *nub[i] sz[i]sz[i]+sz[i]nub[i]

code

#include<bits/stdc++.h>

using namespace std;

const int maxn = 2333;
struct node
{
	int f , t;
}e[maxn * maxn];
int n , m , tot , cnt , num , ks;
int head[maxn] , nxt[maxn * maxn] , low[maxn] , dfn[maxn] , w[maxn];
int used[maxn] , x[maxn * maxn] , y[maxn * maxn] , nub[maxn];
int sta[maxn] , stc , col[maxn] , ans;
char k[maxn][maxn];
inline void build(int a , int b)
{
	e[++tot] = (node){a ,b};
	nxt[tot] = head[a];
	head[a] = tot;
}
inline int read()
{
    int x = 0, f = 1;
    char ch = getchar();
    while (ch < '0' || ch > '9') { if (ch == '-') f = -1; ch = getchar(); }
    while (ch >= '0' && ch <= '9') { x = x * 10 + ch - 48; ch = getchar(); }
    return x * f;
}
inline void tarjan(int b)
{
	low[b] = dfn[b] = ++cnt;
	sta[++stc] = b;
	used[b] = 1;
	for(int i = head[b] ; i ; i = nxt[i])
	{
		int u = e[i].t;
		if(!dfn[u])
		{
			tarjan(u);
			low[b] = min(low[b] , low[u]);
		}
		else if(used[u])
			low[b] = min(low[b] , dfn[u]);
	}
	if(low[b] == dfn[b]) 
	{
		num ++;
		while(b != sta[stc + 1])
		{
			used[sta[stc]] = 0;
			col[sta[stc]] = num;
			stc--;
		}
	}
}
inline void rebuild()
{
	for(int i = 1 ; i <= tot ; i ++)
	{
		e[i].f = 0;
		e[i].f = 0;
	}tot = 0;
	memset(head , 0 , sizeof(head));
	memset(nxt , 0 , sizeof(nxt));
	memset(used , 0 , sizeof(used));
	for(int i = 1 ; i <= m ; i ++)
		if(col[x[i]] != col[y[i]])
			build(col[x[i]] , col[y[i]]);
}
inline void ser(int x)
{
	ks += nub[x];
	for(int i = head[x] ; i ; i = nxt[i])
	{
		int u = e[i].t;
		if(!used[u])
		{
			used[u] = 1;
			ser(u);
		}
	}
}
int main()
{
//	freopen("s.in","r",stdin);
	n = read();
	for(int i = 1 ; i <= n ; i ++)
		for(int j = 1 ; j <= n ; j ++)
		{
			char k;
			cin>>k;
			if(k == '1') 
			{
				x[++m] = i , y[m] = j;
				build(i , j);
			}
		}
	for(int i = 1 ; i <= n ;i ++)
		if(!dfn[i]) tarjan(i);
	rebuild();
	for(int i = 1 ; i <= n ; i ++) nub[col[i]] ++;
	for(int i = 1 ; i <= num ; i ++)
	{
		for(int j = 1 ; j <= num ; j ++ ) used[j] = 0;
		ks = 0;
		used[i] = 1;
		ser(i);
	//	cout<<ks - nub[i]<<" ";
		ans += nub[i] * (ks - nub[i]);
		ans += nub[i] * nub[i];
	} 
//	cout<<num;	 
//	for(int i = 1 ; i <= num ; i ++) cout<<nub[i]<<" ";
	cout<<ans;
}

End

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值