Kafka API 详细示例

一、环境准备

(1)在eclipse中创建一个java工程

(2)在工程的根目录创建一个lib文件夹

(3)解压kafka安装包,将安装包libs目录下的jar包拷贝到工程的lib目录下,并build
path。

(4)启动zk和kafka集群,在kafka集群中打开一个消费者

[itstar@bigdata111 kafka]$ bin/kafka-console-consumer.sh --zookeeper bigdata111:2181 --topic first

二、Kafka生产者Java API

2.1 创建生产者(过时的API)

package com.itstar.kafka;
import java.util.Properties;
import kafka.javaapi.producer.Producer;
import kafka.producer.KeyedMessage;
import kafka.producer.ProducerConfig;

public class OldProducer {

    @SuppressWarnings("deprecation")
    public static void main(String[] args) {

        Properties properties = new Properties();
        properties.put("metadata.broker.list", "bigdata111:9092");
        properties.put("request.required.acks", "1");
        properties.put("serializer.class", "kafka.serializer.StringEncoder");

        Producer<Integer, String> producer = new Producer<Integer,String>(new ProducerConfig(properties));

        KeyedMessage<Integer, String> message = new KeyedMessage<Integer, String>("first", "hello world");
        producer.send(message );
    }
}

2.2 创建生产者(新API)

package com.itstar.kafka;
import java.util.Properties;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.Producer;
import org.apache.kafka.clients.producer.ProducerRecord;

public class NewProducer {

    public static void main(String[] args) {

        Properties props = new Properties();
        // Kafka服务端的主机名和端口号
        props.put("bootstrap.servers", "bigdata112:9092");
        // 等待所有副本节点的应答
        props.put("acks", "all");
        // 消息发送最大尝试次数
        props.put("retries", 0);
        // 一批消息处理大小
        props.put("batch.size", 16384);
        // 请求延时
        props.put("linger.ms", 1);
        // 发送缓存区内存大小
        props.put("buffer.memory", 33554432);
        // key序列化
        props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        // value序列化
        props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");

        KafkaProducer<String, String> producer = new KafkaProducer<>(props);
        for (int i = 0; i < 50; i++) {
            producer.send(new ProducerRecord<String, String>("first", Integer.toString(i), "hello world-" + i));
        }

        producer.close();
    }
}

2.3 创建生产者带回调函数(新API)

package com.itstar.kafka;
import java.util.Properties;
import org.apache.kafka.clients.producer.Callback;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.clients.producer.RecordMetadata;

public class CallBackProducer {

    public static void main(String[] args) {

        Properties props = new Properties();
        // Kafka服务端的主机名和端口号
        props.put("bootstrap.servers", "bigdata112:9092");
        // 等待所有副本节点的应答
        props.put("acks", "all");
        // 消息发送最大尝试次数
        props.put("retries", 0);
        // 一批消息处理大小
        props.put("batch.size", 16384);
        // 增加服务端请求延时
        props.put("linger.ms", 1);
// 发送缓存区内存大小
        props.put("buffer.memory", 33554432);
        // key序列化
        props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        // value序列化
        props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");

        KafkaProducer<String, String> kafkaProducer = new KafkaProducer<>(props);

        for (int i = 0; i < 50; i++) {

            kafkaProducer.send(new ProducerRecord<String, String>("first", "hello" + i), new Callback() {

                @Override
                public void onCompletion(RecordMetadata metadata, Exception exception) {

                    if (metadata != null) {

                        System.out.println(metadata.partition() + "---" + metadata.offset());
                    }
                }
            });
        }

        kafkaProducer.close();
    }
}

2.4 自定义分区生产者

(1)需求:将所有数据存储到topic的第0号分区上

(2)定义一个类实现Partitioner接口,重写里面的方法(过时API)

package com.itstar.kafka;
import java.util.Map;
import kafka.producer.Partitioner;

public class CustomPartitioner implements Partitioner {

    public CustomPartitioner() {
        super();
    }

    @Override
    public int partition(Object key, int numPartitions) {
        // 控制分区
        return 0;
    }
}

(3)自定义分区(新API)

package com.itstar.kafka;
import java.util.Map;
import org.apache.kafka.clients.producer.Partitioner;
import org.apache.kafka.common.Cluster;

public class CustomPartitioner implements Partitioner {

    @Override
    public void configure(Map<String, ?> configs) {

    }

    @Override
    public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) {
        // 控制分区
        return 0;
    }

    @Override
    public void close() {

    }
}

(4)在代码中调用

package com.itstar.kafka;
import java.util.Properties;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.Producer;
import org.apache.kafka.clients.producer.ProducerRecord;

public class PartitionerProducer {

    public static void main(String[] args) {

        Properties props = new Properties();
        // Kafka服务端的主机名和端口号
        props.put("bootstrap.servers", "bigdata112:9092");
        // 等待所有副本节点的应答
        props.put("acks", "all");
        // 消息发送最大尝试次数
        props.put("retries", 0);
        // 一批消息处理大小
        props.put("batch.size", 16384);
        // 增加服务端请求延时
        props.put("linger.ms", 1);
        // 发送缓存区内存大小
        props.put("buffer.memory", 33554432);
        // key序列化
        props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        // value序列化
        props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        // 自定义分区
        props.put("partitioner.class", "com.itstar.kafka.CustomPartitioner");

        Producer<String, String> producer = new KafkaProducer<>(props);
        producer.send(new ProducerRecord<String, String>("first", "1", "itstar"));

        producer.close();
    }
}

(5)测试

1)在bigdata11上监控/opt/module/kafka/logs/目录下first主题3个分区的log日志动态变化情况

[itstar@bigdata11 first-0]$ tail -f 00000000000000000000.log
[itstar@bigdata11 first-1]$ tail -f 00000000000000000000.log
[itstar@bigdata11 first-2]$ tail -f 00000000000000000000.log

2)发现数据都存储到指定的分区了。

三、Kafka消费者Java API

(1)在控制台创建发送者

[itstar@bigdata13 kafka]$ bin/kafka-console-producer.sh --broker-list bigdata11:9092 --topic first
>hello world

(2)创建消费者(过时API)

package com.itstar.kafka.consume;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Properties;
import kafka.consumer.Consumer;
import kafka.consumer.ConsumerConfig;
import kafka.consumer.ConsumerIterator;
import kafka.consumer.KafkaStream;
import kafka.javaapi.consumer.ConsumerConnector;

public class CustomConsumer {

    @SuppressWarnings("deprecation")
    public static void main(String[] args) {
        Properties properties = new Properties();

        properties.put("zookeeper.connect", "bigdata111:2181");
        properties.put("group.id", "g1");
        properties.put("zookeeper.session.timeout.ms", "500");
        properties.put("zookeeper.sync.time.ms", "250");
        properties.put("auto.commit.interval.ms", "1000");

        // 创建消费者连接器
        ConsumerConnector consumer = Consumer.createJavaConsumerConnector(new ConsumerConfig(properties));

        HashMap<String, Integer> topicCount = new HashMap<>();
        topicCount.put("first", 1);

        Map<String, List<KafkaStream<byte[], byte[]>>> consumerMap = consumer.createMessageStreams(topicCount);

        KafkaStream<byte[], byte[]> stream = consumerMap.get("first").get(0);

        ConsumerIterator<byte[], byte[]> it = stream.iterator();

        while (it.hasNext()) {
            System.out.println(new String(it.next().message()));
        }
    }
}

(3)官方提供案例(自动维护消费情况)(新API)

package com.itstar.kafka.consume;
import java.util.Arrays;
import java.util.Properties;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;

public class CustomNewConsumer {

    public static void main(String[] args) {

        Properties props = new Properties();
        // 定义kakfa 服务的地址,不需要将所有broker指定上 
        props.put("bootstrap.servers", "bigdata111:9092");
        // 制定consumer group 
        props.put("group.id", "test");
        // 是否自动确认offset 
        props.put("enable.auto.commit", "true");
        // 自动确认offset的时间间隔 
        props.put("auto.commit.interval.ms", "1000");
        // key的序列化类
        props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        // value的序列化类 
        props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        // 定义consumer 
        KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);

        // 消费者订阅的topic, 可同时订阅多个 
        consumer.subscribe(Arrays.asList("first", "second","third"));

        while (true) {
            // 读取数据,读取超时时间为100ms 
            ConsumerRecords<String, String> records = consumer.poll(100);

            for (ConsumerRecord<String, String> record : records)
                System.out.printf("offset = %d, key = %s, value = %s%n", record.offset(), record.key(), record.value());
        }
    }
}
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 游动-白 设计师: 上身试试
应支付0元
点击重新获取
扫码支付

支付成功即可阅读