datawhale学习
Glaucous Big Devil
Talk is cheap, show me the code.
展开
-
推荐系统——GBDT+LR
[[逻辑回归模型]]逻辑回归是在[[线性回归]]的基础上添加了一个Sigmoid函数(非线形)映射,从而可以使逻辑回归成为一个优秀的分类算法逻辑回归假设数据服从[[伯努利分布]],通过[[极大化似然函数]]的方法,运用[[梯度下降]]来求解参数,来达到将数据二分类的目的。相比于[[协同过滤]]和[[矩阵分解]]利用用户的物品“相似度”进行推荐,LR将问题看成一个分类问题,通过预测正样本的概率对物品进行排序,因此逻辑回归模型将推荐问题转化成了一个点击率预估问题。逻辑回归做推荐的步骤将用户年龄、原创 2020-10-30 22:44:15 · 471 阅读 · 0 评论 -
推荐系统——Wide & Deep
[[点击率]]预估介绍点击率预估是对每次广告点击情况作出预测,可以输出点击或者不点击,也可以输出该次点击的概率,后者有时候也称为pClick.对于点击率预估模型而言,其最终作用是输出点击的一个概率,是一个回归模型可以解决[[FM模型]]的一些问题如泛化能力过强导致会推荐一些其实并没有那么相关的物品。Wide & Deep 模型的记忆能力和泛化能力对于RS而言,memorization和generalization是两个常见的概念,其中memorization代表推荐系统的保守性,即RS通过记原创 2020-10-27 11:28:46 · 195 阅读 · 1 评论 -
推荐系统——矩阵分解&FM
隐语义模型与矩阵分解之所以我们提出隐语义模型与矩阵分解,原因就是[[协同过滤]]存在泛化能力弱的问题而对于隐语义模型而言,我们可以利用隐向量来代表隐藏信息此外,也可以在一定程度上弥补[[协同过滤]]处理稀疏矩阵能力不足的情况隐语义模型隐语义模型主要在于可以挖掘用户和物品的潜在特征来联系不同的用户和物品,接着对不同的用户和item进行聚类可以举个例子,如果用户A喜欢看侦探小说、科普图书以及一些计算机技术书,而B喜欢数学和机器学习方面。对于UserCF而言,系统会先找到和其看了相同书的其他用户,原创 2020-10-25 20:42:11 · 310 阅读 · 0 评论 -
推荐系统——协同过滤
协同过滤协同过滤算法一般是通过用户之前的喜好或者相似的用户的喜好来推荐商品基于领域的协同过滤算法一般有两种算法:基于用户的协同过滤算法(UserCF):基于与用户相似用户的喜好进行推荐基于物品的协同过滤算法(ItemCF):基于用户喜好的物品寻找相似的物品进行推荐对于以上两种算法而言,我们要进行相似性的对比,首先需要进行相似度的计算,为相似度的计算可以使用以下方法。相似性度量方法相似度度量可以使用很多指标,其本质还是计算不同事物之间的距离,那么距离越大,相似性越小,距离越小,相似性越大,.原创 2020-10-22 22:05:02 · 523 阅读 · 4 评论