吃瓜教程2021.10打卡
文章平均质量分 91
以西瓜书的学习为主线,观看whaledata团队录制的吃瓜教程。
喝茶用勺子
这个作者很懒,什么都没留下…
展开
-
吃瓜教程 | Datawhale-2021.10打卡(Task05)
目录第6章 支持向量机6.1 间隔与支持向量6.2 对偶问题6.4 软间隔与正则化6.5 支持向量回归参考文献第6章 支持向量机6.1 间隔与支持向量给定一组线性可分的训练样本,分类学习的目的就是找到一个划分超平面,将不同类别的样本分开,但根据前5章的知识可知,每次训练得到的超平面可能都不相同,如下图所示因此,支持向量机的作用:从几何角度出发,对于线性可分数据集,支持向量机就是找距离正负样本都最远的超平面。相比于感知机,这个超平面的唯一的,且这个划分超平面所产生的分类结果是最鲁棒的,原创 2021-10-31 16:14:57 · 282 阅读 · 0 评论 -
吃瓜教程 | Datawhale-2021.10打卡(Task04)
目录第5章 神经网络5.1 神经元模型5.2 感知机与多层网络5.3 误差逆传播算法(error BackPropagation,BP)5.4 全局最小与局部极小5.5 其他常见神经网络参考文献第5章 神经网络5.1 神经元模型1943年,Miculloch和Pitts受到生物神经网络启发,提出了机器学习中沿用至今的“M-P神经元模型”。在这个模型中,神经元接收到来自nnn个其他神经元传递过来的输入信号,这些输入信号通过带权重的连接进行传递,神经元接收到的总输入值与神经元的阈值进行比较原创 2021-10-27 10:27:24 · 340 阅读 · 1 评论 -
吃瓜教程 | Datawhale-2021.10打卡(Task03)
目录第4章 决策树4.1 基本流程4.2 划分选择4.2.1 信息增益增益率4.2.3 基尼指数参考文献第4章 决策树4.1 基本流程决策树(Decision Tree)是一类常见的机器学习方法,可通过方法对样本进行分类与回归任务。以二分类任务为例,决策树是基于数结构进行决策的。决策树学习的目的是为了得到一棵泛化能力强,即处理未见示例能力强的决策树,决策树学习的算法流程如下图所示:决策树的生成是一个递归过程,在决策树的基本算法中,有以下三种情形会导致递归返回:当前节点包含的样本原创 2021-10-20 19:38:58 · 245 阅读 · 0 评论 -
吃瓜教程 | Datawhale-2021.10打卡(Task02)
这里写目录标题上海前言一、pandas是什么?二、使用步骤1.引入库2.读入数据总结学习内容:学习时间:学习产出:二级目录三级目录上海提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录上海前言一、pandas是什么?二、使用步骤1.引入库2.读入数据总结学习内容:学习时间:学习产出:二级目录三级目录前言提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。提示:原创 2021-10-17 14:06:59 · 277 阅读 · 0 评论 -
吃瓜教程 | Datawhale-2021.10打卡(Task01)
这里写自定义目录标题欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入欢迎使用Markdown编辑器你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Mar原创 2021-10-11 14:23:57 · 169 阅读 · 0 评论