(洛谷P1387)最大正方形

题目描述

二维动态规划,设   d p ( i , j ) \ dp\left(i,j\right)  dp(i,j)为以   ( i , j ) \ \left(i,j\right)  (i,j)为右下顶点的正方形的最大边长。则容易想到   d p ( i , j ) \ dp\left(i,j\right)  dp(i,j)仅与   d p ( i − 1 , j ) \ dp\left(i-1,j\right)  dp(i1,j)   d p ( i , j − 1 ) \ dp\left(i,j-1\right)  dp(i,j1)   d p ( i − 1 , j − 1 ) \ dp\left(i-1,j-1\right)  dp(i1,j1)有关。
而我们知道,倘若存在以   ( i , j ) \ \left(i,j\right)  (i,j)为右下顶点的正方形,则其边长必在   [ 1 , m i n ( d p ( i − 1 , j ) , d p ( i , j − 1 ) ) ] \ \left[1,min\left(dp\left(i-1,j\right),dp\left(i,j-1\right)\right)\right]  [1,min(dp(i1,j),dp(i,j1))]。确定了边长范围以后,自然可以就通过遍历   d p ( i − m , j − m ) \ dp\left(i-m,j-m\right)  dp(im,jm)得到最优解了。

状态转移方程如下:
d p ( i , j ) = { 0 if  p [ i ] [ j ] = = 0 1 if  i = = 0   o r   j = = 0   a n d   p [ i ] [ j ] = = 1 m a x ( m ) else  f o r   m   i n [ 1 , m i n ( d p ( i − 1 , j ) , d p ( i , j − 1 ) ) ] a n d   p ( i − m , j − m ) = = 1 dp(i,j)=\begin{cases}0 &\text{if } p[i][j]==0\\1 &\text{if } i==0 \ or\ j==0\ and\ p[i][j]==1 \\ max(m) &\text{else}\ for\ m \ in \left[1,min\left(dp\left(i-1,j\right),dp\left(i,j-1\right)\right)\right] and\ p\left(i-m,j-m\right)==1\end{cases} dp(i,j)=01max(m)if p[i][j]==0if i==0 or j==0 and p[i][j]==1else for m in[1,min(dp(i1,j),dp(i,j1))]and p(im,jm)==1

潜在优化:

  1. 占个坑先。。。

代码如下:

#include<iostream>
#include<algorithm>
using namespace std;
int r, c;
int p[100][100] = { 0 };
int dp[100][100] = { 0 };

int findans() {
	int result = 0;
	for (int i = 1; i < r; ++i) {
		for (int j = 1; j < c; ++j) {
			if (p[i][j]) {
				int subl = min(dp[i - 1][j], dp[i][j - 1]);
				for (int m = 1; m <= subl; ++m) {
					if (!dp[i - m][j - m]) {
						subl = m - 1;
						break;
					}
				}
				dp[i][j] = subl + 1;
				result = max(result, dp[i][j]);
			}
		}
	}
	//return (result - 1) * 4; //求周长
	return result; //求边长
}

int main(){
	cin >> r >> c;
	for (int i = 0; i < r; ++i) {
		for (int j = 0; j < c; ++j) { 
			cin >> p[i][j]; 
			if ((i == 0 || j == 0) && p[i][j]) dp[i][j] = 1;
		}
	}
	cout << findans() << endl;
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值