Spark集群角色以及任务提交流程
本篇主要介绍两块内容:
一、Spark集群主要角色以及每个角色的主要功能,包含Spark自身角色以及Spark运行在Yarn(Spark on Yarn)上的角色。
二、Spark运行时任务提交的流程。
一、Spark主要角色介绍
Spark Application在集群上运行时,主要由四个部分组成,分别是:Master、Worker、Driver、Executor
1、Spark主要角色
Master
集群的大管家,负责集群的资源管理和分配
Worker
单个机器的管家,负责在单个服务器上提供运行容器,管理当前服务器资源
Driver
单个Spark任务的管理者,管理Executor上的任务执行和任务的分配。类似Yarn的ApplicationMaster。
Executor
具体干活的进程,Spark的工作任务(Task)都由Executor来负责执行。
2、yarn主要角色
yarn的主要角色有四个,从资源管理层面和任务计算层面两个层面去看
资源管理层面
- 集群的资源管理者