你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。
给定一个代表每个房屋存放金额的非负整数数组,计算你在不触动警报装置的情况下,能够偷窃到的最高金额。
示例 1:
输入: [1,2,3,1]
输出: 4
解释: 偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3)。
偷窃到的最高金额 = 1 + 3 = 4 。
示例 2:
输入: [2,7,9,3,1]
输出: 12
解释: 偷窃 1 号房屋 (金额 = 2), 偷窃 3 号房屋 (金额 = 9),接着偷窃 5 号房屋 (金额 = 1)。
偷窃到的最高金额 = 2 + 9 + 1 = 12 。
解题思路:
以当前第k家为媒介,偷这家的收益为:
tou[k]=butou[k-1]+nums[k];
不偷这家的收益是:
butou[k]=max(butou[k-1],tou[k-1]);
比较难理解的是第二个,第二家不偷的收益是:
第k-1家被偷了的收益和第k家不被偷的收益的较大者。
依次迭代即可,需要注意的是最后要输出最后一家被偷的的收益和不被偷的收益的较大者。
C++代码如下:
class Solution
{
public:
int rob(vector&nums)
{
int tou=0,butou=0,t=0;
for(auto&x:nums)
t=butou+x,butou=max(tou,butou),tou=t;
return max(tou,butou);
}
};