1131. 绝对值表达式的最大值

原题链接:

1131. 绝对值表达式的最大值

https://leetcode.cn/problems/maximum-of-absolute-value-expression/description/

完成情况:

在这里插入图片描述

解题思路:

这段代码定义了一个名为directions的私有静态二维整型数组。该数组包含了8组方向的坐标值,每组方向有3个整数值表示。这些方向包括向前、向后、向上、向下、向左、向右等所有可能的组合。在函数中使用这些方向值来计算最大值,并最终返回该最大值。

参考代码:

_1131绝对值表达式的最大值

package leetcode板块;

public class _1131绝对值表达式的最大值 {
    private static int [][] directions = {
            {1,1,1},{1,1,-1},
            {1,-1,1},{1,-1,-1},
            {-1,1,1},{-1,1,-1},
            {-1,-1,1},{-1,-1,-1}
    };

    /**
     *
     * @param arr1
     * @param arr2
     * @return
     */
    public int maxAbsValExpr(int[] arr1, int[] arr2) {
        /*
            2 <= arr1.length == arr2.length <= 40000
            -10^6 <= arr1[i], arr2[i] <= 10^6
        根据提示,最多可以使用的是一个双重for循环
         */
        //那么只要分类讨论,就可以拆解掉一个for循环,然后做一个  8种情况的双重for循环
        int maxVal = 0;
        int n = arr1.length;
        for (int [] dir : directions){
            int curMaxVal = Integer.MIN_VALUE,curMinVal = Integer.MAX_VALUE;
            for (int i = 0;i<n;i++){
                curMaxVal = Math.max(curMaxVal,arr1[i] * dir[0] + arr2[i] * dir[1] + i * dir[2]);
                curMinVal = Math.min(curMinVal,arr1[i] * dir[0] + arr2[i] * dir[1] + i * dir[2]);
            }
            maxVal = Math.max(maxVal,curMaxVal - curMinVal);
        }
        return maxVal;
    }
}

错误经验吸取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值