AcWing 791. 高精度加法
注意点:
- auto
- 尾数下标为 length()-1 或者 size() -1
AC代码
#include<iostream>
#include<cstring>
#include<vector>
using namespace std;
vector<int> add(vector<int> &A,vector<int > &B ){
if(A.size()<B.size()) return add(B,A);
vector <int> C;
int t=0;
for(int i=0;i<A.size();i++){
t+=A[i];
if(i<B.size()) t+=B[i];
C.push_back(t%10);
t/=10;
}
if(t)C.push_back(1);
return C;
}
int main(){
string a,b;
vector<int >A,B;
cin>>a>>b;
for(int i=a.length()-1;i>=0;i--)
A.push_back(a[i]-'0');
for(int i=b.length()-1;i>=0;i--)
B.push_back(b[i]-'0');
auto c=add(A,B);
for(int i=c.size()-1;i>=0;i--)
cout<<c[i];
return 0;
}
AcWing 792. 高精度减法
AC代码
#include<iostream>
#include<cstring>
#include<vector>
using namespace std;a'a
/* 只能计算两个数字都是正数的情况*/
bool cmp(vector<int> &A,vector<int> &B){
if(A.size()!=B.size()) return A.size()>B.size();
for(int i=A.size()-1;i>=0;i--)
if(A[i]!=B[i])
return A[i]>B[i];
return true;
}
vector<int> sub(vector<int> &A,vector<int > &B ){
vector <int> C;
int t=0;
for(int i=0;i<A.size();i++){
t=A[i]-t;
if(i<B.size()) t-=B[i];
C.push_back((t+10)%10);
if(t<0)t=1;
else t=0;
}
while(C.size()>1&&C.back()==0)C.pop_back();
return C;
}
int main(){
string a,b;
vector<int >A,B;
cin>>a>>b;
for(int i=a.length()-1;i>=0;i--)
A.push_back(a[i]-'0');
for(int i=b.length()-1;i>=0;i--)
B.push_back(b[i]-'0');
if(cmp(A,B)){
auto C=sub(A,B);
for(int i=C.size()-1;i>=0;i--) cout<<C[i];
}else{
auto C=sub(B,A);
cout<<"-";
for(int i=C.size()-1;i>=0;i--) cout<<C[i];
}
return 0;
}
AcWing 793. 高精度乘法
发现 这个模板代码 好巧妙
之前自己写的都是 类似于实际计算中的 模拟乘法 进位非常麻烦
而这个 是用一个 数字将 每一位乘完相加 然后取余个位作为 结尾数字
这样 对于计算机来说更加简单(具体看mul函数部分代码)
AC代码
#include<iostream>
#include<vector>
using namespace std;
vector<int>mul(vector<int>&A ,int b){
vector<int> C;
int t=0;
//即使A到达最大长度 也可能存在 进位问题 这for结合了这种情况
for(int i=0;i<A.size()||t;i++){
if(i<A.size())t+=A[i]*b;
C.push_back(t%10);
t/=10;
}
return C;
}
int main(){
string a;
int b;
cin>>a>>b;
vector<int> A;
for(int i=a.size()-1; i>=0;i--) A.push_back(a[i]-'0');
auto C=mul(A,b);
for(int i=C.size()-1; i>=0;i--)
cout<<C[i];
return 0;
}
AcWing 794. 高精度除法
PS:为啥 要进行2次 从头到尾的 扫描呢 然后还用 一次reverse()再给他倒过来
主要是为了 简化去除前导零
AC代码
#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;
vector<int> div(vector<int> A, int b,int &r ){
vector<int> C;
r=0;
for(int i=A.size()-1;i>=0;i--){
r=r*10+A[i];
C.push_back(r/b);
r%=b;
}
reverse(C.begin(),C.end());
while(C.size()>1&&C.back()==0)C.pop_back();
return C;
}
int main(){
string a;
int b;
cin>>a>>b;
vector<int> A;
for(int i=a.size()-1; i>=0;i--) A.push_back(a[i]-'0');
int r;
auto C=div(A,b,r);
for(int i=C.size()-1; i>=0;i--)
cout<<C[i];
cout<<endl<<r<<endl;
return 0;
}