如果你对大数据开发充满好奇,但苦于零基础不知从何入手,这系列文章就是为你量身定制的!
零门槛入门:无需编程经验,从最基础的SQL查询讲起,手把手带你理解数据操作的核心逻辑。
实战为王:每章附赠真实场景练习题,边学边练,拒绝纸上谈兵。
转行利器:内容直击企业高频需求(数据清洗、分析、可视化),搭配职场避坑指南,助你快速构建“可迁移技能”。
系统进阶:从数据类型到复杂查询,从运算符到执行顺序,层层递进,帮你搭建扎实的大数据地基。
无论你是学生、职场新人,还是想跨界转行的探索者,跟着这份指南,用一杯伯牙绝弦的时间,迈出大数据开发的第一步!
🎉 致亲爱的读者朋友们:
📢 放心追更!本系列文章每日三篇干货更新,助你稳扎稳打!
🎥 配套视频解说正在全力打磨中,即将震撼上线——
🔥 关注收藏不迷路,精彩内容绝不辜负!
目录
-
Hive概述
-
基础语法与操作
-
高级查询与函数
-
数据存储与管理
-
Hive与HDFS交互
-
数据更新与删除策略
-
实战练习
-
面试题精选
-
总结
1. Hive概述
定义与特点
-
Hive:基于Hadoop的数据仓库工具,支持类SQL(HQL)查询,将查询转换为MapReduce任务执行。
-
适用场景:处理大规模数据(TB/PB级),适用于离线分析。
-
核心特性:
-
数据存储在HDFS,元数据(表结构)默认存储在MySQL等关系型数据库。
-
高延迟,低交互性(对比传统RDBMS如Oracle)。
-
与Oracle对比
特性 | Hive | Oracle |
---|---|---|
数据量 | 海量数据(TB/PB) | 中小规模(GB/TB) |
执行引擎 | MapReduce(高延迟) | 自带执行引擎(高效) |
更新/删除 | 不支持直接操作,需覆盖写入 | 支持直接操作 |
2. 基础语法与操作
启动与基本命令
bash
# 启动Hive CLI
hive
# 查看数据库
SHOW DATABASES;
# 切换数据库
USE s1127;
# 查看表
SHOW TABLES;
建表示例
sql
CREATE TABLE emp (
empno INT,
ename STRING,
job STRING,
mgr INT,
hiredate STRING,
sal INT,
comm INT,
deptno INT
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';
数据加载
sql
-- 从本地文件加载数据到Hive表
LOAD DATA LOCAL INPATH '/home/1' INTO TABLE emp;
3. 高级查询与函数
窗口函数示例
sql
-- 查询部门薪资前三名员工
SELECT * FROM (
SELECT ename, deptno, sal,
ROW_NUMBER() OVER (PARTITION BY deptno ORDER BY sal DESC) AS rn
FROM emp
) t WHERE rn <= 3;
条件表达式
sql
-- CASE语句
SELECT empno, deptno, sal,
CASE WHEN sal > 2000 THEN 'high_sal' ELSE 'low_sal' END AS lev
FROM emp;
-- IF函数
SELECT empno, IF(sal > 2000, 'high_sal', 'low_sal') AS lev FROM emp;
4. 数据存储与管理
存储格式对比
格式 | 类型 | 特点 |
---|---|---|
TextFile | 行式存储 | 默认格式,易读但低效 |
ORC | 列式存储 | 高压缩比,查询高效 |
建表指定存储格式
sql
CREATE TABLE t_orc (id INT)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS ORC;
5. Hive与HDFS交互
文件操作命令
bash
# 在HDFS创建目录
hadoop fs -mkdir -p /student
# 上传本地文件到HDFS
hadoop fs -put /home/1 /student/
# 从HDFS下载文件到本地
hadoop fs -get /student/1 /home/111
6. 数据更新与删除策略
覆盖写入实现更新
sql
-- 部门20员工涨薪10000
INSERT OVERWRITE TABLE emp
SELECT empno, ename, job, mgr, hiredate,
CASE WHEN deptno=20 THEN sal+10000 ELSE sal END AS sal,
comm, deptno
FROM emp;
-- 删除部门10数据
INSERT OVERWRITE TABLE emp
SELECT * FROM emp WHERE deptno <> 10;
7. 实战练习
题目
-
数据加载:将本地文件
/home/emp_data
加载到Hive表emp
中。 -
复杂查询:统计每个部门平均薪资,并按降序排列。
-
存储优化:创建ORC格式表
emp_orc
,并将emp
表数据导入。
操作示例
sql
-- 创建ORC表并导入数据
CREATE TABLE emp_orc LIKE emp
STORED AS ORC;
INSERT INTO emp_orc SELECT * FROM emp;
8. 面试题精选
-
Hive与RDBMS的主要区别?
-
Hive适用于批处理,高延迟;RDBMS支持事务、低延迟。
-
-
Hive的元数据存储在哪里?
-
默认存储在MySQL等关系型数据库。
-
-
如何优化Hive查询性能?
-
使用列式存储(ORC)、分区表、避免全表扫描。
-
-
Hive支持直接更新数据吗?如何实现?
-
不支持,需通过
INSERT OVERWRITE
覆盖写入。
-
9. 总结
Hive作为Hadoop生态的核心工具,通过类SQL语法简化了大数据分析流程。其核心优势在于处理海量数据,但需注意性能优化(如选择列式存储)。掌握HQL语法、数据加载策略及覆盖写入技巧是实际应用的关键。建议结合Spark等计算引擎提升处理效率。