LruCache简介

一般来说,缓存策略主要包含缓存的添加、获取和删除这三类操作。如何添加和获取缓存这个比较好理解,那么为什么还要删除缓存呢?这是因为不管是内存缓存还是硬盘缓存,它们的缓存大小都是有限的。当缓存满了之后,再想其添加缓存,这个时候就需要删除一些旧的缓存并添加新的缓存。
因此LRU(Least Recently Used)缓存算法便应运而生,LRU是最近最少使用的算法,它的核心思想是当缓存满时,会优先淘汰那些最近最少使用的缓存对象。采用LRU算法的缓存有两种:LrhCache和DisLruCache,分别用于实现内存缓存和硬盘缓存,其核心思想都是LRU缓存算法。

LruCache是Android 3.1所提供的一个缓存类,所以在Android中可以直接使用LruCache实现内存缓存。
LruCache是个泛型类,主要算法原理是把最近使用的对象用强引用(即我们平常使用的对象引用方式)存储在 LinkedHashMap 中。当缓存满时,把最近最少使用的对象从内存中移除,并提供了get和put方法来完成缓存的获取和添加操作。

LruCache的使用(以图片缓存为例)

int maxMemory = (int) (Runtime.getRuntime().totalMemory() / 1024);
int cacheSize = maxMemory / 8;
mMemoryCache = new LruCache<String, Bitmap>(cacheSize) {
    @Override
    protected int sizeOf(String key, Bitmap value) {
        return value.getRowBytes() * value.getHeight() / 1024;
    }
};

①设置LruCache缓存的大小,一般为当前进程可用容量的1/8。
②重写sizeOf方法,计算出要缓存的每张图片的大小。

注意: 缓存的总容量和每个缓存对象的大小所用单位要一致。

LruCache的实现原理
LruCache的核心思想就是要维护一个缓存对象列表,其中对象列表的排列方式是按照访问顺序实现的,即一直没访问的对象,将放在队尾,即将被淘汰。而最近访问的对象将放在队头,最后被淘汰。
在这里插入图片描述
LinkedHashMap通过下面构造函数来指定双向链表的结构是访问顺序还是插入顺序

public LinkedHashMap(int initialCapacity,
	float loadFactor,
	boolean accessOrder) {
	super(initialCapacity, loadFactor);
	this.accessOrder = accessOrder;
}

accessOrder设置为true则为访问顺序,为false,则为插入顺序。

put()方法

public final V put(K key, V value) {
         //不可为空,否则抛出异常
	if (key == null || value == null) {
		throw new NullPointerException("key == null || value == null");
	}
	V previous;
	synchronized (this) {
            //插入的缓存对象值加1
		putCount++;
            //增加已有缓存的大小
		size += safeSizeOf(key, value);
           //向map中加入缓存对象
		previous = map.put(key, value);
            //如果已有缓存对象,则缓存大小恢复到之前
		if (previous != null) {
			size -= safeSizeOf(key, previous);
		}
	}
        //entryRemoved()是个空方法,可以自行实现
	if (previous != null) {
		entryRemoved(false, key, previous, value);
	}
        //调整缓存大小(关键方法)
	trimToSize(maxSize);
	return previous;
}

调用 trimToSize()方法,来判断缓存是否已满,如果满了就要删除近期最少使用的算法。

trimToSize()方法

public void trimToSize(int maxSize) {
    //死循环
	while (true) {
		K key;
		V value;
		synchronized (this) {
            //如果map为空并且缓存size不等于0或者缓存size小于0,抛出异常
			if (size < 0 || (map.isEmpty() && size != 0)) {
				throw new IllegalStateException(getClass().getName()
					+ ".sizeOf() is reporting inconsistent results!");
			}
            //如果缓存大小size小于最大缓存,或者map为空,不需要再删除缓存对象,跳出循环
			if (size <= maxSize || map.isEmpty()) {
				break;
			}
            //迭代器获取第一个对象,即队尾的元素,近期最少访问的元素
			Map.Entry<K, V> toEvict = map.entrySet().iterator().next();
			key = toEvict.getKey();
			value = toEvict.getValue();
            //删除该对象,并更新缓存大小
			map.remove(key);
			size -= safeSizeOf(key, value);
			evictionCount++;
		}
		entryRemoved(true, key, value, null);
	}
}

trimToSize()方法不断地删除LinkedHashMap中队尾的元素,即近期最少访问的,直到缓存大小小于最大值。

get()方法

public final V get(K key) {
        //key为空抛出异常
	if (key == null) {
		throw new NullPointerException("key == null");
	}

	V mapValue;
	synchronized (this) {
            //获取对应的缓存对象
            //get()方法会实现将访问的元素更新到队列头部的功能
		mapValue = map.get(key);
		if (mapValue != null) {
			hitCount++;
			return mapValue;
		}
		missCount++;
	}

LruCache中维护了一个集合LinkedHashMap,该LinkedHashMap是以访问顺序排序的。当调用put()方法时,就会在结合中添加元素,并调用trimToSize()判断缓存是否已满,如果满了就用LinkedHashMap的迭代器删除队尾元素,即近期最少访问的元素。当调用get()方法访问缓存对象时,就会调用LinkedHashMap的get()方法获得对应集合元素,同时会更新该元素到队头。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值