吴恩达机器学习笔记(四)

八. 支持向量机(SVM)

1. 优化目标

复习:逻辑回归

1. 假设函数:
h_{\theta}(x)=\frac{1}{1+e^{-\theta^{T}X}}

2. 代价函数:
Cost(h{_\theta}(x),y)=-y\times log(h{_\theta}(x))-(1-y)\times log(1-h{_\theta}(x))
=-y\times log(\frac{1}{1+e^{-\theta^{T}X}})-(1-y)\times log(1-\frac{1}{1+e^{-\theta^{T}X}})


y=1和y=0时的代价函数图像(紫色为SVM优化的代价函数)

3. 正则化:
_{\theta}^{min}\; -\frac{1}{m} \sum _{i=1}^{m} [y^{(i)}log(h{_\theta}(x^{(i)}))+(1-y^{(i)})\times log(1-h{_\theta}(x^{(i)}))]+\frac{\lambda}{2m}\sum_{j=1}^{n}\theta_{j}^{2}

4. 输出:
当ℎ𝜃 (𝑥) >= 0.5时,预测 𝑦 = 1;当ℎ𝜃 (𝑥) < 0.5时,预测 𝑦 = 0 。

 (1)代价函数的优化:

(如上图紫色折线所示)替代逻辑回归中的代价函数,为SVM带来计算上的优势。

左侧(y = 1时)命名为cost_{1}(\theta^{T}x),右侧(y = 0时)命名为cost_{0}(\theta^{T}x)


代价函数的对比

(2)正则化的优化:

  • 除去1/m项(常数项不影响使代价函数最小的θ的选择)
  • 参数 c 代替正则化参数 λ (改为优化目标,与 1/λ 作用相同)

_{\theta}^{min}\; c\sum _{i=1}^{m} [y^{(i)}cost_{1}(\theta^{T}x^{(i)})+(1-y^{(i)})\times cost_{0}(\theta^{T}x^{(i)})]+\frac{1}{2}\sum_{j=1}^{n}\theta_{j}^{2}
\begin{matrix} A+\lambda B\rightarrow cA+B\\ \end{matrix}
 

(3)输出的优化:

直接预测 y 的值等于1还是0

h_{\theta}(x)=\left\{\begin{matrix} 1 & if \; \theta^{T}x\geqslant 0\\ 0& otherwise \end{matrix}\right.

2. 大边界分类

3. 核函数(Kernel function)

(1)为什么要引入核函数

之前用高级数的多项式模型来解决无法用直线进行分隔的分类问题

  • 例如上图的判定边界,模型可能是h_{\theta}(x)=\theta_{0}+\theta_{1}x_{1}+\theta_{2}x_{2}+\theta_{3}x_{1}x_{2}+\theta_{4}x_{1}^{2}+\theta_{5}x_{2}^{2}+\cdots的形式。
  • 用一系列新特征 f 来替换模型中的每一项:f_{1}=x_{1},f_{2}=x_{2},f_{3}=x_{1}x_{2},f_{4}=x_{1}^{2},f_{5}=x_{2}^{2}
  • 得到h_{\theta}(x)=f_{1}+f_{2}+\cdots +f_{n}:除了对原有的特征进行组合,还可以利用核函数来计算出新的特征

高斯核函数(Gaussian Kernel)

4. 使用支持向量机

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值