- 博客(6)
- 收藏
- 关注
原创 MAC 版 anaconda3安装Tensorflow
1、先安装anaconda3 最好对应Python3.6清华镜像https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/官网镜像https://repo.anaconda.com/archive/PS:anaconda 5.2.0 对应python 3.6;如果出现anaconda-navigator 闪退的情况,是因为版本问题,更新即可。(版本升级)升级navigator,执行conda update anaconda-navig
2020-07-22 10:25:25 517
原创 Python实现逐步回归
逐步回归(stepwise)的思想从大量的变量中,选择对建立回归模型起重要影响作用变量的方法。每一步只引入或剔除一个变量,即每次引入对因变量影响最显著的自变量,并对已在模型中的变量进行逐个检验,把编委不显著的变量从方程中剔除,最终得到的模型中既不漏掉对因变量显著的,又不包含对因变量影响不显著的变量。需要设置引入变量和剔除变量的显著性水平,alpha(in)<=alpha(out),否...
2020-07-19 18:50:01 5159 4
原创 朴素贝叶斯常见问题总结
朴素贝叶斯法是基于贝叶斯定理和特征条件独立假设的分类方法,属于生成模型,即通过训练数据学习联合概率分布P(X,Y),联合分布由条件概率分布P(X|y=ck)和先验概率P(y=ck)估计得来。思想:后验概率最大化,将数据分到后验概率最大的那一类中。损失函数:0-1损失参数估计方法:极大似然估计、贝叶斯估计原理:这里的期望风险最小化等价于后验概率最大化。常见的问题总结:1、需要会后验概率最...
2020-07-19 18:49:26 1466
原创 回归检验
一、背景1、多元回归的残差假定:残差的期望为0;残差对所有的x而言有同方差性;残差是服从正态分布,且相互独立。2、残差检验需要检验的部分正态性检验方差齐性检验独立性(自相关性)检验二、详细阐述1、正态性检验还有当模型的残差服从正态性假设时,才能保证模型偏回归系数对于的t值和模型的F值是有效的。残差的正态性检验由两类方法:定性的图形法(PP图和QQ图):当PP图和QQ图的点...
2020-07-19 18:48:42 1482
原创 机器学习易错点总结
1、时间序列模型中,AR、MA、ARMA、GARCH中GARCH是广义回归模型,对误差的方差进行建模,适用于波动性分析和预测。2、对问题的解空间树进行搜索时,能使一个节点能有多次机会成为活节点的方法是:回溯法。3、分类方法从技术上可以分为:规则归纳法、贝叶斯方法、决策树方法、基于距离的分类方法。4、LR中如果同时加入L1和L2范数,产生的作用是:可以做特征选择,也可以在一定程度上纺织过拟合。...
2020-07-19 18:47:58 1160
原创 pip install 出现Read timed out 问题
pip --default-timeout=100 install -i https://pypi.tuna.tsinghua.edu.cn/simple imblearnPS:设置时间限制,选用清华镜像下载,这样会快很多。
2020-02-24 17:30:38 385
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人