算法基础--二--数值算法

一 随机化数据

1.随机数生成
线性同余发生器

其中A,B,M是常数
其中A,B,M是常数。
X0的值初始化这个发生器,这样不同的X0值就会产生不同的数组。用来初始化伪随机发生器的值叫做种子。
由于在一个数组中的所有数值都和M同余,在最多M个数后,发生器会产生一个他之前产生过的数,然后数组从这个点开始重复。

2.寻找最大公约数

两个整数的最大公约数(GCD)是指两个整数共有约数中最大的一个。

注意:如果GCD(A,B)=1,那么A和B被称作互质

一个找到最大公约数的方法是将两个因数分解并且找到他们共有的因数。但有个更简便的算法------欧几里得算法

int GCD(int a,int b)
{
	int t;
	while(b!=0)
	{
		t=a%b;
		a=b;
		b=t
	}
	return a;
}

另外,两数的最大公倍数为两数相乘除以最大最大公约数。

3.求幂运算

首先,快速幂的目的就是做到快速求幂,假设我们要求a^b,按照朴素算法就是把a连乘b次,这样一来时间复杂度是O(b)也即是O(n)级别,快速幂能做到O(logn),快了好多好多。它的原理如下:

假设我们要求a ^ b,那么其实b是可以拆成二进制的,该二进制数第i位的权为2^(i-1),例如当b= =11时
a11=a(2 ^ 0+2 ^ 1+2 ^ 3)
  11的二进制是1011,11 = 2³×1 + 2²×0 + 2¹×1 + 2º×1,因此,我们将a¹¹转化为算 a2^ 0a 2 ^ 1a 2^3,也就是a1a2a8 ,看出来快的多了吧原来算11次,现在算三次,但是这三项貌似不好求的样子…不急,下面会有详细解释。   由于是二进制,很自然地想到用位运算这个强大的工具:&和>> &运算通常用于二进制取位操作,例如一个数 & 1 的结果就是取二进制的最末位。还可以判断奇偶x&1= =0为偶,x&1= =1为奇。 >>运算比较单纯,二进制去掉最后一位,不多说了,先放代码再解释。
  
快速幂

int poww(int a, int b) {
    int ans = 1, base = a;
    while (b != 0) {
        if (b & 1 != 0)
            ans *= base;
            base *= base;
            b >>= 1;
    }
    return ans;
}

代码很短,死记也可行,但最好还是理解一下吧,其实也很好理解,以b==11为例,b=>1011,二进制从右向左算,但乘出来的顺序是 a(20)*a(21)*a(23),是从左向右的。我们不断的让base *=base目的即是累乘,以便随时对ans做出贡献。

其中要理解base*=base这一步:因为 basebase==base2,下一步再乘,就是base2base2==base4,然后同理 base4 * base4=base8,由此可以做到base–>base2–>base4–>base8–>base16–>base32…指数正是 2^i ,再看上面的例子,a¹¹= a1a2a8,这三项就可以完美解决了,快速幂就是这样。

顺便啰嗦一句,由于指数函数是爆炸增长的函数,所以很有可能会爆掉int的范围,根据题意选择 long long还是mod某个数自己看着办。
 ps 以上内容转自https://baike.so.com/doc/7017753-7240645.html

当操作数很大时,会要求结果对一个很大的数取余,这时可利用快速幂取模算法实现。
原理
在这里插入图片描述
快速幂取模算法

int PowerMod(int a, int b, int c)
{
    int ans = 1;
    a = a % c;
    while(b>0) {
        if(b % 2 = = 1)
        ans = (ans * a) % c;
        b = b/2;
        a = (a * a) % c;
    }
    return ans;
}
4,有关素数的运算
寻找素数因子

寻找一个数的素因子,最显而易见的方法是尝试将这个数用比其小而大于等于二的整数试除。当一个可能的因子将这个数整除时,保存这个因子用因子除这个数,然后尝试更多的因子。注意,每次试除需要将同一个因子再重复除一次以防这个数含有多于一个该因子。
算法改进:

  • 不需要检验这个数能否被任何一个除了2以外的偶数整除,因为他如果能被任意偶数整除,则一定能够被2整除。这意味着只需要检验2和奇数是否能整除该数,而不用检查所有可能的因数。这样可将运行时间减半。
  • 仅需要检查不大于待测数字平方根的因子。
  • 每次用一个因子试除该数时可以新需要检查的可能因子的上界。
寻找素数

埃拉托色尼筛法(the sieve of Eratosthenes)是一种找出给定范围内所有素数的简单方法。此方法适用于较小的数,因为它需要一个由所有考虑到的数所构成的表。
其基本思想是建立一个以2和上界之间所有的数构成的表。删去所有2的倍数(不包括2本身)然后从2开始,检索该表来寻找下一个没有被删去的数,删去所有这个数的倍数(不包括这个数本身)。注意,其中有些数是2的倍数,他们已经被删去了。重复这一步,寻找下一个没有被删去的数,删去其所有倍数,直到计算到上界的平方根,这时,所有没被删去的数就都是素数了。
示例程序

#include<stdio.h>
#include<math.h>

#define MAXNUMBER 10000

int main()
{
	int i,j;
	int prime[MAXNUMBER]={0};
	for(i=2;i<=MAXNUMBER;i++)
	prime[i]=1;
	for(i=2;i<=sqrt(MAXNUMBER);i++)
	{
		if(prime[i]==1)
		for(j=i+1;j<=MAXNUMBER;j++)
		if(j%i==0)
		prime[j]=0;
	}
	for(i=2;i<=MAXNUMBER;i++)
	if(prime[i]==1)
	printf("%d  ",i);
	return 0;
}
素性测试
  • 算法:费马素性测试
  • 费马小定理表明,如果p是素数,并且1<=n<=p,n^(p-1) Mod p =1;换句话说,如果将p-1个n相乘,再用所得数除以p,结果为1.
    请注意,即使p不是素数,n^(p-1) Mod p =1也可能成立。在这种情况下,n被称作费马骗子,因为它错误的暗示了p是素数。
    如果n^(p-1) Mod p !=1,那么n被称作费马证人,因为它证明了p不是素数。
    可以证明,对于自然数p,至少1和p中的一半数n是费马证人。也就是说,如果p不是素数,并且如果随机抽取了1和p中的一个数n,有50%的可能性n是一个费马证人
    可以看出,在每个测试中,有50%的机会,选择到一个费马证人。所以,如果p通过k次测试,那么就有(1/2)^k的机会,选择到一个费马证人。换句话说,有(1/2) ^ k的机会p是一个合数而假装是素数。
    这是一个概率算法(一个产生正确结果有一定概率的算法)的例子。目前仍有一个很小的概率证明该算法是错误的,但可以重复测试直到达到想要的任何确定性级别。
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值