问题链接:http://lx.lanqiao.cn/problem.page?gpid=T35
问题描述
抗日战争时期,冀中平原的地道战曾发挥重要作用。
地道的多个站点间有通道连接,形成了庞大的网络。但也有隐患,当敌人发现了某个站点后,其它站点间可能因此会失去联系。
我们来定义一个危险系数DF(x,y):
对于两个站点x和y (x != y), 如果能找到一个站点z,当z被敌人破坏后,x和y不连通,那么我们称z为关于x,y的关键点。相应的,对于任意一对站点x和y,危险系数DF(x,y)就表示为这两点之间的关键点个数。
本题的任务是:已知网络结构,求两站点之间的危险系数。
输入格式
输入数据第一行包含2个整数n(2 <= n <= 1000), m(0 <= m <= 2000),分别代表站点数,通道数;
接下来m行,每行两个整数 u,v (1 <= u, v <= n; u != v)代表一条通道;
最后1行,两个数u,v,代表询问两点之间的危险系数DF(u, v)。
输出格式
一个整数,如果询问的两点不连通则输出-1.
样例输入
7 6
1 3
2 3
3 4
3 5
4 5
5 6
1 6
样例输出
2
思路
找出u,v间所有的通路,记录每个点在所有通路中出现的次数,记通路个数为key,关键点出现的次数等于key。
代码
#include<bits/stdc++.h>
using namespace std;
int n,m,u,v,a,b,key=0,sum=0,path[1005],out[1005]={0};//path记录路径 out记录出现次数
bool td[1005][1005]={0},isView[1005]={false};
void dfs(int cur,int step){ //step记录步数
path[step]=cur;
if(cur==v){
++key;
for(int i=0;i<step;++i)
++out[path[i]];
return;
}
isView[cur]=true;
for(int i=1;i<=n;++i)
if(td[cur][i] && !isView[i])
dfs(i,step+1);
isView[cur]=false;
}
int main(){
cin>>n>>m;
for(int i=0;i<m;++i){
cin>>a>>b;
td[a][b]=td[b][a]=true;
}
cin>>u>>v;
dfs(u,0);
if(!out[u]){//如果点u出现的个数为0,则不存在通路
cout<<-1;
return 0;
}
for(int i=1;i<=n;++i)if(out[i]==key)++sum;
cout<<sum-1;//扣除点u
return 0;
}