图片平滑器(Java实现)-LeetCode

本文介绍了如何使用Java解决LeetCode中关于图片平滑器的问题。通过计算每个像素点周围8个像素的平均灰度,并考虑边界条件,对原数组进行平滑处理。解题思路包括创建新数组、计算平均灰度和遍历更新新数组。
摘要由CSDN通过智能技术生成

题目描述:

包含整数的二维矩阵 M 表示一个图片的灰度。你需要设计一个平滑器来让每一个单元的灰度成为平均灰度 (向下舍入) ,平均灰度的计算是周围的8个单元和它本身的值求平均,如果周围的单元格不足八个,则尽可能多的利用它们。

示例 1:

输入:
[[1,1,1],
 [1,0,1],
 [1,1,1]]
输出:
[[0, 0, 0],
 [0, 0, 0],
 [0, 0, 0]]
解释:
对于点 (0,0), (0,2), (2,0), (2,2): 平均(3/4) = 平均(0.75) = 0
对于点 (0,1), (1,0), (1,2), (2,1): 平均(5/6) = 平均(0.83333333) = 0
对于点 (1,1): 平均(8/9) = 平均(0.88888889) = 0

注意:

  1. 给定矩阵中的整数范围为 [0, 255]。
  2. 矩阵的长和宽的范围均为 [1, 150]。

解题思路:

  1. 创建一个新的数组(数组大小与原数组相同)
  2. 先写出每个单元的平均灰度计算方法(需要注意每个单元周围的八个单元是否在给定数组之内。所以需要判定,下标是否越界)。
  3. 遍历给定数组的每一个元素,将此元素的平均灰度,赋值在新数组对应位置上。

解题代码:

class Solution {
    //求每个单元的平均灰度
    public int[][] imageSmoother(int[][] M) {
        int[][] ar
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值