机器学习分类和回归问题## 标题
机器学习分类和回归问题
监督学习问题主要可以划分为两类,即 分类问题 和 回归问题
分类问题预测数据属于哪一类别。 —— 离散
回归问题根据数据预测一个数值。 —— 连续
通俗地讲,分类问题就是预测数据属于哪一种类型,就像上面的房屋出售预测,通过大量数据训练模型,然后去预测某个给定房屋能不能出售出去,属于能够出售类型还是不能出售类型。
回归问题就是预测一个数值,比如给出房屋一些特征,预测房价
- 分类问题
在监督学习中,当输出变量 Y 取有限个离散值时,预测问题就成了分类(classification)问题
监督学习从数据中学习一个分类模型或分类决策函数,称为分类器(classifier);分类器对新的输入进行预测,称为分类
分类问题包括学习和分类两个过程。学习过程中,根据已知的训练数据集利用学习方法学习一个分类器;分类过程中,利用已习得的分类器对新的输入实力进行分类
分类问题可以用很多学习方法来解决,比如k近邻、决策树、感知机、逻辑斯谛回归、支撑向量机、朴素贝叶斯法、神经网络等
- 回归问题
回归问题用于预测输入变量和输出变量之间的关系
回归模型就是表示从输入变量到输出变量之间映射的函数
回归问题的学习等价于函数拟合:选择一条函数曲线,使其很好地拟合已知数据,并且能够很好地预测未知数据
回归问题的分类
按照输入变量的个数:一元回归和多元回归
按照模型类型:线性回归和非线性回归
回归学习的损失函数 —— 平方损失函数
如果选取平方损失函数作为损失函数,回归问题可以用著名的 最小二乘法(least squares)来求解
————————————————
原文链接:https://blog.csdn.net/weixin_42796403/article/details/113764350