每日一题|2021.6.16石子游戏
题目:877.石子游戏
亚历克斯和李用几堆石子在做游戏。偶数堆石子排成一行,每堆都有正整数颗石子 piles[i] 。
游戏以谁手中的石子最多来决出胜负。石子的总数是奇数,所以没有平局。
亚历克斯和李轮流进行,亚历克斯先开始。 每回合,玩家从行的开始或结束处取走整堆石头。 这种情况一直持续到没有更多的石子堆为止,此时手中石子最多的玩家获胜。
假设亚历克斯和李都发挥出最佳水平,当亚历克斯赢得比赛时返回 true ,当李赢得比赛时返回 false 。
示例:
输入:[5,3,4,5]
输出:true
解释:
亚历克斯先开始,只能拿前 5 颗或后 5 颗石子 。
假设他取了前 5 颗,这一行就变成了 [3,4,5] 。
如果李拿走前 3 颗,那么剩下的是 [4,5],亚历克斯拿走后 5 颗赢得 10 分。
如果李拿走后 5 颗,那么剩下的是 [3,4],亚历克斯拿走后 4 颗赢得 9 分。
这表明,取前 5 颗石子对亚历克斯来说是一个胜利的举动,所以我们返回 true 。
提示:
- 2 <= piles.length <= 500
- piles.length 是偶数。
- 1 <= piles[i] <= 500
- sum(piles) 是奇数。
解答思路
该题最自然的想法是使用递归,穷举每一种可能,n排石子的时间复杂度为O(2^n),会超出时间限制。
因为每次是从开始或结尾取走一行石子,因此剩下来的行一定是连续的,那么最终状态和中间状态可以建立某种联系,最终状态受中间状态影响,因此可以使用动态规划。
该题使用二维动态规划。
-
1.dp[i][j]:当前石子还剩i到j行时,先手选石子的人领先后手的最大石子数。
-
2.dp[i][i]:只剩第i行的时候,拿走石子的人比另一个人领先的数量;
dp[i][i] = piles[i],因为他只能拿走这一行; -
3.先手拿走i,则他的领先数量为
dp[i][j] = piles[i] - dp[i+1][j]
先手拿走j,他的领先为:
dp[i][j] = piles[j] - dp[i][j-1]
这个算式的意思就是,先手选了第i行,那么他的对手会在下一回合在[i+1, j]中选择最利于自己的那一行。对当前先手而言,他的领先数量为piles[i] - dp[i+1][j]那么选哪种方案呢?选择结果更大的那一个。
本题动态规划的迭代方向是从后往前,一开始可选的范围是[0, length - 1],一直到最后,只剩一行。最后结果返回dp[0, length - 1],如果这个值大于0,则先手获胜。
提示:动态规划最好在纸上画每一种状态的转移。二维dp就画一个二维数组。
代码
class Solution {
// 贪心?贪心真的能解决问题吗?
// 两个人的策略都用贪心
// 贪心不能解决问题,纯贪心在这里就是递归,还是穷举的递归,会超时
// 理论上一直贪心确实可以赢
// 这题要用dp
public boolean stoneGame(int[] piles) {
int n = piles.length;
int[][] dp = new int[n][n];
// 只有一行的时候,他的领先就是piles[i]
// 这不是迭代过程中算出来的,这就是初始值
for(int i = 0; i < n; i++){
dp[i][i] = piles[i];
}
for(int i = n - 2;i >= 0;i--){
for(int j = n - 1;j > i;j--){
dp[i][j] = Math.max(piles[i] - dp[i + 1][j],piles[j]-dp[i][j - 1]);
}
}
return dp[0][n - 1] > 0;
}
}