295. 数据流的中位数
中位数是有序列表中间的数。如果列表长度是偶数,中位数则是中间两个数的平均值。
例如:
[2,3,4] 的中位数是 3
[2,3] 的中位数是 (2 + 3) / 2 = 2.5
设计一个支持以下两种操作的数据结构:
- void addNum(int num) - 从数据流中添加一个整数到数据结构中。
- double findMedian() - 返回目前所有元素的中位数。
示例:
addNum(1)
addNum(2)
findMedian() -> 1.5
addNum(3)
findMedian() -> 2
进阶:
如果数据流中所有整数都在 0 到 100 范围内,你将如何优化你的算法?
如果数据流中 99% 的整数都在 0 到 100 范围内,你将如何优化你的算法?
简单介绍:
难度:困难
使用语言:JAVA。
这道题来自leetcode题库的堆算法标签。
解题思路:
首先看题、分析题意:
- 普通的排序算法就不提了,要想简化复杂度,自然会往堆的方向想
- 如果是偶数个数字,我们把它分成两个集合。左边的集合的所有数字小于右边集合的所有数字。中位数就是左边集合最大数和右边集合最小的数取一个平均数。
- 想到上边这个点,会发现我们只关心集合的最大数和最小数,立马就会想到优先队列。添加数字的时候,我们把数字放到两个优先队列中。始终保证两个优先队列的大小相等。如果总数是奇数,我们就让左边集合多一个数。
既然,我们已经分析出来题目的关键任务了,下面我们就可以开始思考实现了。
我们采用算法与数据结构的思路来剖析一下这题
数据结构:
要实现对数据的操作,我们要先明确存储数据的数据结构。
Queue MaxHeap = new PriorityQueue<>() - 优先级队列
①add(E e) 和 offer(E e) 方法
② poll() 和 remove() 方法
PriorityQueue默认是一个小顶堆,然而可以通过传入自定义的Comparator函数来实现大顶堆。如下代码:
private static final int DEFAULT_INITIAL_CAPACITY = 11;
PriorityQueue<Integer> maxHeap=new PriorityQueue<Integer>(DEFAULT_INITIAL_CAPACITY, new Comparator<Integer>() {
@Override
public int compare(Integer o1, Integer o2) {
return o2-o1;
}
});
代码
class MedianFinder {
// 最大堆
Queue<Integer> MaxHeap = new PriorityQueue<>(new Comparator<Integer>(){
@Override
public int compare(Integer i1, Integer i2){
return i2 - i1;
}
});
// 最小堆
Queue<Integer> MinHeap = new PriorityQueue<>();
double median;
/** initialize your data structure here. */
public MedianFinder() {
}
public void addNum(int num) {
int leftsize = MaxHeap.size();
int rightsize = MinHeap.size();
//1. 如果左右堆个数相等
if(leftsize == rightsize){
//1.1 如果最大堆为空,则直接存入最大堆
if(leftsize == 0){
MaxHeap.add(num);
return;
}
//1.2 如果num <= 最小堆堆顶,num 存入最大堆
if(num < MinHeap.peek()){
MaxHeap.add(num);
}else{
//1.3 如果num > 最小堆堆顶
//1.3.1 将最小堆堆顶拿出,放入最大堆,再将num存入最小堆
MaxHeap.add(MinHeap.poll());
MinHeap.add(num);
}
}else{
//2. 如果左右堆个数不等
//2.1 num >= 最大堆堆顶, num 存入最小堆
if(num >= MaxHeap.peek()){
MinHeap.add(num);
}else{
//2.2 num < 最小堆堆顶, num 存入最大堆
//2.2.1 将最大堆堆顶拿出,放入最小堆,再将num存入最大堆
MinHeap.add(MaxHeap.poll());
MaxHeap.add(num);
}
}
}
public double findMedian() {
if(MaxHeap.size() > MinHeap.size()){
return MaxHeap.peek();
}else{
return ((double) MaxHeap.peek() + MinHeap.peek()) /2 ;
}
}
}
/**
* Your MedianFinder object will be instantiated and called as such:
* MedianFinder obj = new MedianFinder();
* obj.addNum(num);
* double param_2 = obj.findMedian();
*/