LeetCode - 堆 - 295. 数据流的中位数

295. 数据流的中位数

中位数是有序列表中间的数。如果列表长度是偶数,中位数则是中间两个数的平均值。

例如:
[2,3,4] 的中位数是 3
[2,3] 的中位数是 (2 + 3) / 2 = 2.5

设计一个支持以下两种操作的数据结构:

  • void addNum(int num) - 从数据流中添加一个整数到数据结构中。
  • double findMedian() - 返回目前所有元素的中位数。

示例:

addNum(1)
addNum(2)
findMedian() -> 1.5
addNum(3)
findMedian() -> 2

进阶:

如果数据流中所有整数都在 0 到 100 范围内,你将如何优化你的算法?
如果数据流中 99% 的整数都在 0 到 100 范围内,你将如何优化你的算法?

简单介绍:
难度:困难
使用语言:JAVA。
这道题来自leetcode题库的堆算法标签。

解题思路:
首先看题、分析题意:

  1. 普通的排序算法就不提了,要想简化复杂度,自然会往堆的方向想
  2. 如果是偶数个数字,我们把它分成两个集合。左边的集合的所有数字小于右边集合的所有数字。中位数就是左边集合最大数和右边集合最小的数取一个平均数。
  3. 想到上边这个点,会发现我们只关心集合的最大数和最小数,立马就会想到优先队列。添加数字的时候,我们把数字放到两个优先队列中。始终保证两个优先队列的大小相等。如果总数是奇数,我们就让左边集合多一个数。

既然,我们已经分析出来题目的关键任务了,下面我们就可以开始思考实现了。
我们采用算法与数据结构的思路来剖析一下这题

数据结构:
要实现对数据的操作,我们要先明确存储数据的数据结构。

Queue MaxHeap = new PriorityQueue<>() - 优先级队列

①add(E e) 和 offer(E e) 方法
② poll() 和 remove() 方法

PriorityQueue默认是一个小顶堆,然而可以通过传入自定义的Comparator函数来实现大顶堆。如下代码:

 private static final int DEFAULT_INITIAL_CAPACITY = 11;
PriorityQueue<Integer> maxHeap=new PriorityQueue<Integer>(DEFAULT_INITIAL_CAPACITY, new Comparator<Integer>() {
        @Override
        public int compare(Integer o1, Integer o2) {                
            return o2-o1;
        }
    });

代码

class MedianFinder {

    // 最大堆
    Queue<Integer> MaxHeap = new PriorityQueue<>(new Comparator<Integer>(){
        @Override
        public int compare(Integer i1, Integer i2){
            return i2 - i1;
        }
    });

    // 最小堆
    Queue<Integer> MinHeap = new PriorityQueue<>();

    double median;

    /** initialize your data structure here. */
    public MedianFinder() {

    }
    
    public void addNum(int num) {
        

        int leftsize = MaxHeap.size();
        int rightsize = MinHeap.size();
        //1. 如果左右堆个数相等
        if(leftsize == rightsize){
            //1.1 如果最大堆为空,则直接存入最大堆
            if(leftsize == 0){
                MaxHeap.add(num);
                return;
            }
            //1.2 如果num <= 最小堆堆顶,num 存入最大堆
            if(num < MinHeap.peek()){
                MaxHeap.add(num);
            }else{
                //1.3 如果num > 最小堆堆顶
                //1.3.1 将最小堆堆顶拿出,放入最大堆,再将num存入最小堆
                MaxHeap.add(MinHeap.poll());
                MinHeap.add(num);
            }
        }else{
            //2. 如果左右堆个数不等
            //2.1 num >= 最大堆堆顶, num 存入最小堆
            if(num >= MaxHeap.peek()){
                MinHeap.add(num);
            }else{
                //2.2 num < 最小堆堆顶, num 存入最大堆
                //2.2.1 将最大堆堆顶拿出,放入最小堆,再将num存入最大堆
                MinHeap.add(MaxHeap.poll());
                MaxHeap.add(num);
            }
        }
    }
    
    public double findMedian() {
        if(MaxHeap.size() > MinHeap.size()){
            return MaxHeap.peek();
        }else{
            return ((double) MaxHeap.peek() + MinHeap.peek()) /2 ;
        }
    }
}

/**
 * Your MedianFinder object will be instantiated and called as such:
 * MedianFinder obj = new MedianFinder();
 * obj.addNum(num);
 * double param_2 = obj.findMedian();
 */
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值