4.Recursive Network(李宏毅)

1.应用:Sentiment Analysis情节分析

在这里插入图片描述
Recursive Network是比RNN更一般型式的神经网路。
RNN来看情绪分析的案例,将Word Sequence输入神经网路,经过相同的function-f最后经过function-g得到结果。
如果是Recursive Network的话,必需先决定这几个Sequence的关联,上图下案例来看,我们将 x 1 , x 2 x_1,x_2 x1,x2丢到function-f得到 h 1 h^{1} h1,再将 x 3 , x 4 x_3,x_4 x3,x4丢入相同的function-f,得到 h 2 h^{2} h2,再将 h 1 , h 2 h^{1},h^2 h1,h2丢到function-f得到 h 3 h^{3} h3,再经过function-g得到最后结果。
在实作Recursive Network的时候要注意, x , h x,h x,h的维度必需要相同(因为用的是同一个f)。
事实上RNN是Recursive Network的一种结构模式。

2.Recursive Network

递归网络时一种RNN的扩展形式,他是空间的展开,且具有树形结构。
在这里插入图片描述目标:『not very good』,我们要决定这句话是好,还是坏。

从syntactic structure(文法结构)可以看的出这句话的结合方式
1.用词嵌入将每一个Word用Vectory来表示。
2.根据文法结构来结合:将Very, Good丢入function-f得到输出(词向量维等于| Z |)输入:| 2Z |,输出:| Z |
直观来看,我们希望得到的输出代表着『Very Good』
function-f是一个nn,它所处理的事情或许比想像中还要复杂一些,因此不会只是单纯的将两个向量相加而以。
举例来说,not是中性字,而good是正面,两个加起来并不是正面偏中性,而是一个负面字眼,因此这不可能是单纯的相加就可以达成的。


在这里插入图片描述
透过训练资料的学习,让『not very good』经过function-f的产出再经过function-g来得到最终的情绪等级,再依据与实际情绪的loss做优化。

3.Recursive Network Tensor Network

在这里插入图片描述
function-f可以很简单,如上图上所示,单纯的让a,b两个向量相加之后乘上权重W,但这么做可能无法满足我们上说明的需求期望,或者很难达到理想的效果。
改进: 我们要让a,b两个向量是有相乘的关联,因此调整为上图下所示,两个向量堆叠之后转置 X T X^{T} XT乘上权重W再乘上X它的计算逻辑就是将两个元素相乘 x i x j x_ix_j xixj之后再乘上相对应的权重索引元素值 W i j W_{ij} Wij做加总 ∑ i , j \sum_{i,j} i,j,这么计算之后得到的是一个数值,而后面所得项目是一个2x1矩阵,无法相加,因此同样的事再做一次,要注意到简报上两个W颜色不同代表的是不同的权重值。

4.Matrix-Vector Recursive Network

在这里插入图片描述
该网络的核心思想:将词向量分成两部分,1是自己的部分,2是影响别人的部分。
这个方法感觉比较有道理,但实际上的Performance是较Recursive Network Tensor Network差。

Tree LSTM

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值