pytorch教程
文章平均质量分 55
肥宅08
这个作者很懒,什么都没留下…
展开
-
pytorch教程2----搭建神经网络
torch.nn.Flatten(start_dim=1,end_dim=-1) 运行结果:torch.nn.Linear(in_features, out_features, bias=True, device=None, dtype=None)in_features (int) – size of each input sampleout_features (int) – size of each output samplebias (bool) – If set to , the layer w原创 2023-05-26 10:15:29 · 215 阅读 · 1 评论 -
pytorch教程1----tensor张量
张量类似于 NumPy 的 ndarray,张量可以在 GPU 或其他专用硬件来加速计算。原创 2023-05-22 16:39:17 · 173 阅读 · 1 评论 -
pytorch教程3----TensorBoard
安装了TensorBoard(pip install tensorboard),就可以让你记录PyTorch模型。并将指标放入一个目录中(events文件),以便在 TensorBoard UI 中进行可视化。标量、图像、直方图、图形和嵌入可视化都是支持的。执行上述代码,文件夹会保存一个events文件;在命令行输入 -------注意文件路径不需要events路径,为events上一级路径;原创 2023-05-26 11:59:04 · 296 阅读 · 2 评论 -
pytorch教程4-----自定义数据集
检索数据集的特征并一次标记一个样本。在训练模型时,我们通常希望 在“小批量”中传递样本,在每个时期重新洗牌数据以减少模型过度拟合,并使用 Python 的 加快数据检索速度。我们已将该数据集加载到DataLoader中,并可以根据需要循环访问该数据集。下面的每次迭代都会返回一批 图像and标签(分别包含特征和标注)。自定义数据集类必须实现三个函数:__init__、__len__和__getitem__。,在我们遍历所有批次后,数据将被洗牌。准备数据以使用数据加载程序进行训练。遍历 DataLoader。原创 2023-05-30 14:45:39 · 306 阅读 · 1 评论