Python实现梯度法(最速上升(下降)法)寻找函数极大(极小)值

  首先简介梯度法的原理。首先一个实值函数$R^{n} \rightarrow R$的梯度方向是函数值上升最快的方向。梯度的反方向显然是函数值下降的最快方向,这就是机器学习里梯度下降法的基本原理。但是运筹学中的梯度法略有不同,表现在步长的选择上。在确定了梯度方向(或反方向)是我们优化目标函数值的方向后,我们不能够直接获得最佳的步长。常规的做法是选定一个固定的步长,而运筹学中的做法是将问题转化为一个一维搜索问题,进而通过求解这个一维问题(关于步长的函数)的最大最小值获得最佳步长。

  一个好消息是若目标函数$f(x)$二次连续可微, 且海森矩阵 $∇^2 f(x)$ 负定,那么最优步长的近似值可以由如下的公式给出。$$r_k = -\frac{∇f(x^{(k)})^T∇f(x^{(k)})}{∇f(x^{(k)})^T∇^2f(x^{(k)})∇f(x^{(k)})}$$

  下面给出一例利用梯度法求函数极小值(如果是凸规划问题同时也是最小值)的Python实现:

  

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
梯度下降是一种常用的优化算,用于求解函数极小。在Python中,可以使用NumPy库来实现梯度下降。 以下是使用梯度下降函数极小的步骤: 1. 定义目标函数:首先,需要定义一个目标函数,即要求解极小函数。例如,我们可以定义一个简单的二次函数作为目标函数:f(x) = x^2。 2. 初始化参数:选择一个初始点作为起始点,并初始化学习率和迭代次数。学习率决定了每次迭代更新参数的步长,迭代次数决定了算的收敛性。 3. 计算梯度:计算目标函数在当前参数点处的梯度梯度表示了函数在该点处的变化率和方向。 4. 更新参数:根据梯度和学习率,更新参数的数。更新规则为:参数 = 参数 - 学习率 * 梯度。 5. 迭代更新:重复步骤3和步骤4,直到达到指定的迭代次数或满足停止条件(例如梯度接近于零)。 下面是一个使用梯度下降求解目标函数极小Python代码示例: ```python import numpy as np # 定义目标函数 def target_function(x): return x**2 # 梯度下降求解极小 def gradient_descent(learning_rate, num_iterations): # 初始化参数 x = 0 # 迭代更新 for i in range(num_iterations): # 计算梯度 gradient = 2 * x # 更新参数 x = x - learning_rate * gradient return x # 设置学习率和迭代次数 learning_rate = 0.1 num_iterations = 100 # 调用梯度下降函数 result = gradient_descent(learning_rate, num_iterations) print("极小点:", result) print("极小:", target_function(result)) ``` 运行以上代码,将得到目标函数极小点和极小
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值