Leetcode No.53 Maximum Subarray

文章介绍了如何使用动态规划解决经典问题——找到给定数组中具有最大和的子串。通过将问题分解为以每个数结尾的最大子串问题,并定义递推公式F[n+1]=max(F[n]+nums[n+1],nums[n+1]),计算得到最大和。
摘要由CSDN通过智能技术生成

  参考资料:

  考点:子串 & 动态规划 & [题干]

Input: nums = [-2,1,-3,4,-1,2,1,-5,4]
Output: 6
Explanation: The subarray [4,-1,2,1] has the largest sum 6.

  1. 心路历程

  这道题非常经典,蕴含的思想也是精巧无比。

  2. 正解

  简单来说官解就是找到了题目中的无后效性,和问题的可分解性(动归)

  1)首先分解问题

  一个数组中的子串是相当多的,穷举显然不是理想的做法,那么最大的子串和等于什么??答:等于以每个数结尾的最大子串的最大值。以数组[-2,1,-3]为例,就是以-2为结尾的子串的最大值,以1为结尾的子串的最大值,和以3为结尾的子串的最大值。这三个最大值中的最大值显然就是原始字符串的最大值。我们可以敏锐的发现,以XX为结尾的子串的最大值这一个问题,是很容易拆分的。比如:以1为结尾的子串的最大值,就等于“以-2为结尾的子串的最大值加上1”和“1”之间的大者。显然可以记这个函数“以每个数结尾的最大子串的最大值”为F。

  2)确定F的递推公式

  还是以数组[-2, 1, -3]为例,F[0] = -2,我们有F[n + 1] = max(F[n] + nums[n+1], nums[n+1]) ,将F[n]都算出来后,他们中的最大值显然就是我们想要的结果了。

  代码如下:

class Solution(object):
    def maxSubArray(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        """
        f = nums[0]
        l = len(nums)
        maxAns = nums[0]

        # f[i] = (f[i-1] + nums[i], nums[i])

        for i in range(1, l):
            f = max(f + nums[i], nums[i])
            maxAns = max(maxAns, f)

        return maxAns
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值