- 博客(4)
- 收藏
- 关注
原创 统计学习方法学习(三)——朴素贝叶斯法
朴素贝叶斯法基本方法 基本方法 输入空间:X⊆Rn\mathcal X\subseteq \mathbf R^nX⊆Rn为nnn维向量的集合; 输出空间:Y={c1,c2,...,cK}\mathcal Y=\{c_1,c_2,...,c_K\}Y={c1,c2,...,cK}为类标记集合。
2021-03-22 10:28:09 120
原创 统计学习方法学习(二)——k近邻法
k近邻法算法距离度量算法实现:kdkdkd树构造kdkdkd树搜索kdkdkd树代码 算法 输入:训练集T={(x1,y1),(x2,y2),...,(xN,yN)}T=\{(x_1,y_1),(x_2,y_2),...,(x_N,y_N)\}T={(x1,y1),(x2,y2),...,(xN,yN)}其中: xi∈X=Rn\ x_i\in \mathcal X=\mathbf R^n xi∈X=Rn为实例的特征向量, yi∈Y={c1,c2,...,cK}\
2021-03-18 10:24:50 181 4
原创 统计学习方法学习(一)——感知机
感知机感知机模型 感知机模型 输入空间(特征空间): X⊆Rn\ \mathcal X\subseteq \mathbf R^n X⊆Rn 输出空间: Y={+1,−1}\ \mathcal Y=\{+1,-1\} Y={+1,−1} 由输入空间到输出空间的函数如下: f(x)=sign(w∙x+b)\ f(x) = sign({w}\bullet{x}+b) f(x)=sign(w∙x+b) 其中: x∈X\ x\in \math
2021-03-16 14:31:26 158
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人