吃瓜任务4

M-P 神经元

M-P神经元:接收n个输入,并给各个输入赋予权重计算加权和,然后和自身特有的阈值 θ \theta θ进行比较,最后经过激活函数处理得到输出。
y = f ( ∑ i = 1 n w i x i − θ ) = f ( w T x + b ) y=f(\sum_{i=1}^{n}w_ix_i-\theta )=f(\mathbf{w} ^T\mathbf{x} +b) y=f(i=1nwixiθ)=f(wTx+b)

通用近似定理

只需一个包含足够多神经元的隐层,多层前馈网络就能以任意精度逼近任意复杂度的连续函数。

多层前馈网络

每层神经元和下一层神经元全部互连,神经元之间不存在同层连接,也不存在跨层连接。

在模型训练过程中,神经网络自动学习提取有用的特征,因此机器学习向全自动数据分析又前进了一步。

对于回归任务,损失函数常选用均方误差;对于分类任务,损失函数常选用交叉熵。

误差逆传播算法

基于随机梯度下降的参数更新方法:
w ← w + △ w ▽ w = − η ▽ w E w\gets w+\bigtriangleup w \\ \bigtriangledown w=-\eta \bigtriangledown _w E ww+ww=ηwE
E E E为损失函数, η \eta η为学习率。

参考文献:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值