TensorFlow之ragged tensor

前言

Ragged Tensor(不规则张量) 是一种特殊的多维数据结构,用于处理维度长度不固定的数据(例如变长序列)。与常规张量(所有维度长度相同)不同,Ragged Tensor允许不同维度(如行、列)的元素数量不一致,特别适合处理自然语言、时间序列等变长数据。

应用场景

自然语言处理(NLP):处理变长句子(如分词后的文本:[[“Hello”, “world”], [“Hi”]])。
时间序列分析:不同时间步长的序列(如传感器数据)。
图结构数据:每个节点的邻居数量不同(如社交网络)

示例

基本操作:

import tensorflow as tf

# 创建Ragged Tensor
ragged_tensor = tf.ragged.constant([
    [1, 2, 3],
    [4],
    [5, 6]
])
print(ragged_tensor)
# Output: <tf.RaggedTensor [[1, 2, 3], [4], [5, 6]]>

# 转换为普通张量(需填充统一长度)
padded = ragged_tensor.to_tensor(default_value=0)
print(padded)
# Output: [[1 2 3], [4 0 0], [5 6 0]]

结果如下:

<tf.RaggedTensor [[1, 2, 3], [4], [5, 6]]>
tf.Tensor(
[[1 2 3]
 [4 0 0]
 [5 6 0]], shape=(3, 3), dtype=int32)

拼接操作

import tensorflow as tf 

rt1 = tf.ragged.constant([[1, 2], [3]])
rt2 = tf.ragged.constant([[4], [5, 6]])
# 进行拼接
combined = tf.concat([rt1, rt2], axis=1)
print(combined)

sliced = combined[1:]  # 取第二行以后的数据
print(sliced)

结果如下:

<tf.RaggedTensor [[1, 2, 4], [3, 5, 6]]>
<tf.RaggedTensor [[3, 5, 6]]>
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值