MapReduce 去除重复行,列

本文通过MapReduce代码示例,介绍如何在大数据处理中去除数据集中的重复行和列。

直接上代码
数据类型为:
在这里插入图片描述

package com.sheng.test;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;




/*
   ​    KEYIN: 输入的key

   ​     VALUEIN:输入的value

   ​     KEYOUT:输出的key

   ​    VALUEOUT:输出的value

   ​    Context:Mapper的上下文
 * 	去除重复
 * 
 */
class WcMapper4 extends Mapper<LongWritable, Text, Text, IntWritable> {
		/*
		 * KeyIn:LongWritable 行的偏移量    ValueIn:Text 这一行的值 TextInputformat
		 * 
		 */

		@Override
		protected void map(Long
<think>好的,我现在需要帮助用户解决在AIS数据中删除重复并保留唯一记录的问题。首先,我需要理解用户的需求。他们提到AIS数据,可能是指船舶自动识别系统(Automatic Identification System)的数据,这类数据通常包含时间戳、船舶ID、位置等信息。用户希望去除重复,但保留其中一条。 接下来,我要考虑如何处理数据去重。根据之前的引用,特别是引用[3]中的SQL语句,用户可能在使用数据库处理数据,比如MySQL。引用[3]中使用了GROUP_CONCAT和SUBSTRING_INDEX来获取最新的peakPeakValue,同时结合MAX函数获取最新时间。这可能意味着用户的数据中有时间戳,需要根据时间保留最新的一条记录。 用户的问题是关于去重的,常见的方法包括使用DISTINCT关键字、GROUP BY结合聚合函数,或者窗口函数如ROW_NUMBER()来标记重复。但具体到保留哪一条,比如最新的或最旧的,需要明确规则。例如,如果数据中有时间戳字段,可能需要按时间排序,保留最新或最早的一条。 考虑到引用[3]中的例子,用户可能更倾向于保留最新的记录。因此,使用ROW_NUMBER()按时间降序排,为每组的重复分配序号,然后选择序号为1的,这可能是一个有效的方法。这种方法在SQL中常用,但需要数据库支持窗口函数,比如MySQL 8.0以上版本。 另外,如果用户的数据没有唯一标识或时间戳,可能需要根据所有来判断重复,这时候使用DISTINCT或GROUP BY所有字段即可。但如果有部分关键需要判断重复,比如船舶ID和时间,则需要根据这些分组。 还需要考虑性能问题,特别是当数据量大的时候。引用[1]中提到数据分区和排序可以减少IO,可能在大数据环境下,使用Hive或Spark时,合理分区和排序能提升去重效率。但用户当前的问题可能是在数据库层面处理,因此优化查询语句的结构很重要。 用户可能遇到的问题包括:如何确定重复的依据字段,如何处理没有时间戳的情况,以及不同数据库系统的语法差异。例如,在MySQL中,如果使用窗口函数,需要版本支持,而低版本可能需要使用子查询和临时表来实现类似功能。 总结可能的解决方案: 1. 使用DISTINCT关键字去除完全重复。 2. 使用GROUP BY和聚合函数保留特定的最大或最小值。 3. 使用窗口函数(如ROW_NUMBER)为重复编号,然后筛选出第一条。 4. 在ETL过程中进去重,比如使用Apache Spark或Pandas进数据处理。 需要根据用户的具体数据结构和需求选择合适的方法。例如,如果他们需要保留最新的记录,且有时间戳字段,方法3是最合适的。如果所有都完全相同,方法1即可。如果重复基于部分字段,则需要结合GROUP BY和聚合函数。 此外,还要注意数据备份,避免在操作过程中丢失数据。建议在测试环境中验证去重逻辑的正确性,再应用到生产数据。</think>### AIS数据去重方法及实现步骤 在AIS数据处理中删除重复记录并保留唯一记录,可通过以下方法实现: #### 方法1:使用SQL窗口函数(适用于有时间戳的精细去重) ```sql DELETE FROM ais_data WHERE (ship_id, create_time) NOT IN ( SELECT ship_id, MAX(create_time) FROM ais_data GROUP BY ship_id, mmsi, position -- 根据实际业务字段组合 ) ``` **实现原理**: 1. 通过`GROUP BY`确定重复判定字段(如船舶ID+位置) 2. 使用`MAX(create_time)`保留最新记录 3. 通过子查询删除非最新记录[^3] #### 方法2:使用ROW_NUMBER()标记重复 ```sql WITH ranked_data AS ( SELECT *, ROW_NUMBER() OVER( PARTITION BY ship_id, position ORDER BY create_time DESC ) as row_num FROM ais_data ) DELETE FROM ranked_data WHERE row_num > 1 ``` **优势**: - 可灵活定义排序规则(时间倒序/正序) - 支持多字段组合去重 - 可视化标记重复层级[^3] #### 方法3:临时表去重(兼容低版本数据库) ```sql CREATE TABLE temp_ais LIKE ais_data; INSERT INTO temp_ais SELECT DISTINCT * FROM ais_data; TRUNCATE TABLE ais_data; INSERT INTO ais_data SELECT * FROM temp_ais; DROP TABLE temp_ais; ``` **适用场景**: - 全字段完全重复的情况 - 需要简单快速去重的场景[^1] #### 方法4:Hive数据仓库处理(大数据场景) ```sql INSERT OVERWRITE TABLE ais_data_clean SELECT ship_id, FIRST_VALUE(position) OVER w, MAX(create_time) OVER w FROM ais_data WINDOW w AS ( PARTITION BY mmsi ORDER BY create_time ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING ) ``` **特性**: - 支持TB级数据处理 - 自动进数据分区优化[^1] - 可结合MapReduce实现分布式计算 ### 关键注意事项 1. **字段选择**:建议优先使用`mmsi+时间戳+经纬度`作为唯一性判断基准 2. **性能优化**:对`create_time`字段建立索引可提升50%以上查询效率 3. **数据验证**:去重后建议执`SELECT COUNT(DISTINCT composite_key)`验证 4. **备份策略**:操作前使用`CREATE TABLE backup AS SELECT * FROM ais_data`
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值