最大连续1的个数 III

给定一个由若干 0 0 0 1 1 1 组成的数组 A A A,我们最多可以将 K K K 个值从 0 0 0 变成 1 1 1

返回仅包含 1 1 1 的最长(连续)子数组的长度。

示例 1:

输入:A = [1,1,1,0,0,0,1,1,1,1,0], K = 2
输出:6
解释: 
[1,1,1,0,0,1,1,1,1,1,1]
粗体数字从 0 翻转到 1,最长的子数组长度为 6

示例 2:

输入:A = [0,0,1,1,0,0,1,1,1,0,1,1,0,0,0,1,1,1,1], K = 3
输出:10
解释:
[0,0,1,1,1,1,1,1,1,1,1,1,0,0,0,1,1,1,1]
粗体数字从 0 翻转到 1,最长的子数组长度为 10

提示:

1 < = A . l e n g t h < = 20000 0 < = K < = A . l e n g t h A [ i ] 为 0 或 1 1 <= A.length <= 20000\\ 0 <= K <= A.length\\ A[i] 为 0 或 1 1<=A.length<=200000<=K<=A.lengthA[i]01

前言
对于数组 A A A 的区间 [ left , right ] [\textit{left}, \textit{right}] [left,right] 而言,只要它包含不超过 K K K 0 0 0,我们就可以根据它构造出一段满足要求,并且长度为 right − left + 1 \textit{right} - \textit{left} + 1 rightleft+1的区间。

因此,我们可以将该问题进行如下的转化,即:

对于任意的右端点 right \textit{right} right,希望找到最小的左端点 left \textit{left} left,使得 [ left , right ] [\textit{left}, \textit{right}] [left,right] 包含不超过 K K K 0 0 0

只要我们枚举所有可能的右端点,将得到的区间的长度取最大值,即可得到答案。

要想快速判断一个区间内 0 0 0 的个数,我们可以考虑将数组 A A A 中的 0 0 0 变成 1 1 1 1 1 1 变成 0 0 0。此时,我们对数组 A A A 求出前缀和,记为数组 P P P,那么 [ left , right ] [\textit{left}, \textit{right}] [left,right] 中包含不超过 K K K 1 1 1(注意这里就不是 00 了),当且仅当二者的前缀和之差:

P [ right ] − P [ left − 1 ] P[\textit{right}] - P[\textit{left} - 1] P[right]P[left1]

小于等于 K K K。这样一来,我们就可以容易地解决这个问题了。

  1. 二分查找
    思路与算法
    P [ right ] − P [ left − 1 ] ≤ K P[\textit{right}] - P[\textit{left} - 1] \leq K P[right]P[left1]K
    等价于
    P [ left − 1 ] ≥ P [ right ] − K P[\textit{left} - 1] \geq P[\textit{right}] - K P[left1]P[right]K ( 1 ) (1) (1)
    也就是说,我们需要找到最小的满足 ( 1 ) (1) (1) 式的 left l e f t \textit{left}left leftleft。由于数组 A A A 中仅包含 0 / 1 0/1 0/1,因此前缀和数组是一个单调递增的数组,我们就可以使用二分查找的方法得到 left \textit{left} left
    细节
    注意到 ( 1 ) (1) (1) 式的左侧的下标是 left − 1 \textit{left}-1 left1 而不是 left \textit{left} left,那么我们在构造前缀和数组时,可以将前缀和整体向右移动一位,空出 P [ 0 ] P[0] P[0] 的位置,即:
    { P [ 0 ] = 0 P [ i ] = P [ i − 1 ] + ( 1 − A [ i − 1 ] ) \begin{cases} P[0] = 0 \\ P[i] = P[i-1] + (1 - A[i-1]) \end{cases} {P[0]=0P[i]=P[i1]+(1A[i1])
    此时,我们在数组 P P P 上二分查找到的下标即为 left \textit{left} left 本身,同时我们也避免了原先 left = 0 \textit{left}=0 left=0 left − 1 = − 1 \textit{left}-1=-1 left1=1不在数组合法的下标范围中的边界情况。
class Solution {
public:
    int longestOnes(vector<int> &A, int K) {
        int n = A.size(),res=0;
        vector<int> sum(n + 1);
        for (int i = 1; i <= n; i++) {
            sum[i] = sum[i - 1] + (1-A[i - 1]);
        }
        for (int right = 0; right < n; right++) {
            int left = lower_bound(sum.begin(), sum.end(),sum[right+1]-K) - sum.begin();
            res = max(res, right - left + 1);
        }
        return res;
    }
};
  1. 滑动窗口
    思路与算法
    我们继续观察 ( 1 ) (1) (1) 式,由于前缀和数组 P P P 是单调递增的,那么 ( 1 ) (1) (1) 式的右侧 P [ right ] − K P[\textit{right}] - K P[right]K 同样也是单调递增的。因此,我们可以发现:
    随着 right \textit{right} right 的增大,满足 ( 1 ) (1) (1) 式的最小的 left \textit{left} left 值是单调递增的。
    这样一来,我们就可以使用滑动窗口来实时地维护 left \textit{left} left right \textit{right} right 了。在 right \textit{right} right 向右移动的过程中,我们同步移动 left \textit{left} left,直到 left \textit{left} left 为首个(即最小的)满足 ( 1 ) (1) (1) 式的位置,此时我们就可以使用此区间对答案进行更新了。
    细节
    当我们使用滑动窗口代替二分查找解决本题时,就不需要显式地计算并保存出前缀和数组了。我们只需要知道 left \textit{left} left right \textit{right} right 作为下标在前缀和数组中对应的值,因此我们只需要用两个变量 lsum \textit{lsum} lsum rsum \textit{rsum} rsum 记录 left \textit{left} left right \textit{right} right 分别对应的前缀和即可。
class Solution {
public:
    int longestOnes(vector<int> &A, int K) {
        int n = A.size(), res = 0, lsum = 0, rsum = 0, left = 0, right = 0;
        vector<int> sum(n + 1);
        while (right < n) {
            rsum += (1 - A[right]);
            while (rsum - lsum > K) {
                lsum += (1 - A[left]);
                left++;
            }
            res = max(res, right - left+1);
            right++;
        }
        return res;
    }
};
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值