正交匹配追踪算法(OMP)


前言

记录OMP算法的学习过程。


一、信号模型和逆问题

对于非齐次线性方程组 A x = b Ax = b Ax=b式中 b ∈ R m , A ∈ R m ∗ n , x ∈ R m b \in R^m,A \in R^{m*n},x \in R^m bRm,ARmn,xRm
一般如果我们考虑 A , x A,x A,x已知,那么求 b b b是一个很简单的问题。
这个问题的逆问题为, b , A b,A b,A已知,去求 x x x
n > > m n>>m n>>m时,该方程有无穷多解,如果我们想得到唯一解,就需要限定 x x x,实际上在压缩感知领域,就是限定 x x x是稀疏的,也就是 x x x中有很多0,在这种情况下去求解 x x x,其中 k k k x x x的稀疏度,实际上就是 x x x中非0的个数。

二、OMP原理

现在假设我们已知 A , b A,b A,b,想从中恢复出 x x x,显然我们需要充分利用 x x x是稀疏的这个事实,由线性代数知识显然可以知道 b b b其实是矩阵 A A A的列向量的线性组合,也就是 x x x作为权重与 A A A的列向量加权求和后得到的结果,由于 x x x是稀疏的,那么显然可以发现一个事实, A A A中仅仅有很少的列向量对 b b b做出了贡献,我们的目的就是找出这些对 b b b贡献较大的列向量,与此同时,根据列向量在 A A A中的位置,可以判断出 x x x中非零元素的位置,这就是OMP算法的基本思想。
那么关键是如何刻画 A A A中列向量对 b b b的贡献,在欧几里和空间中,我们常常用内积去定义两个向量的距离,实际上我们可以将 b b b A A A中列向量方向去投影,由此判断某个列向量对其的贡献。公式化表达 c o n t r i b u t i o n ( b , a i ) = ∣ < b , a i > ∣ a i ∣ ∣ contribution(b,a_i) =| \frac{<b,a_i>}{|a_i|}| contribution(b,ai)=ai<b,ai>式中 a i a_i ai A A A的第 i i i个列向量,实际上在考虑投影时回出现正负号问题,我们只用考虑贡献的大小,而不去考虑方向,所以加上了绝对值。(<,>为内积运算)
实际上如果我们事先将 A A A矩阵的列向量单位化,那么公式可以简化为 c o n t r i b u t i o n ( b , a i ) = ∣ < b , a i > ∣ contribution(b,a_i) =|<b,a_i>| contribution(b,ai)=<b,ai>

实际上给定稀疏度 k k k,我们只需要迭代 k k k次算法就可以求出 A A A k k k个贡献最大的列向量,以及 x x x k k k个不为0的位置。


三、伪代码

在这里插入图片描述
需要注意的是有个残差的更新过程,实际上原始残差就是 y y y,每一次找到一个和他相关的列向量后,就得到了这部分的信息,所以要减去这部分信息,剩余的信息再去和列向量相关。

四、MATLAB代码

clear;
clc;
m = 64;
n = 256; % n>>m;
CN  = [];

A = randn(m,n);
x = zeros(n,1);
x(1) =0.4;
x(40) =0.6;
x(32) = 0.8;  % 构造稀疏向量x

k = 3;  % 代表稀疏度
b = A * x;
%% initialization 
r = b;   % 初始残差
Cn = []; % 用于记录存放的列的序号
An = []; % 用于存放列的列向量

%% Normalization
abs_colmn = sqrt(sum(A.^2)); % 每列的模长
abs_matrix = repmat(abs_colmn,m,1);
norm_A  = A./abs_matrix;
% disp(sum(norm_A.^2))
%% 迭代求解
for ii = 1:k
    product = norm_A' * r; % 实际上就是A的每个列向量与r相乘
    [val,index] = max(abs(product));
    Cn = [Cn index];
    An = [An norm_A(:,index)];
    xk   = inv(An' * An) * An' * b; % 最小二乘解
    r    = b - An * xk;   
end
x_recovery = zeros(n,1);
x_recovery(Cn) = xk;

figure;
subplot(2,1,1)
stem(x);
title('origin signal')
subplot(2,1,2)
stem(x_recovery ./ (abs_colmn')); % 反归一化
title('recovery signal')

实验结果
在这里插入图片描述
可见恢复了原始信号

总结

记录学习过程~

正交匹配追踪(Orthogonal Matching Pursuit,简称OMP算法是一种基于迭代的稀疏表示方法,用于寻找信号的稀疏表示。利用OMP算法可以从一组原子中选择少量的原子来逼近一个给定的信号。 在Matlab中,可以通过内置的函数实现OMP算法。使用omp函数,可以输入原子矩阵和待逼近的信号,然后输出稀疏表示的系数向量。 具体使用OMP算法的步骤如下: 1. 构建信号模型:确定信号模型,并将其表示为原子矩阵的线性组合。 2. 构建原子矩阵:根据所选的信号模型,构建原子矩阵。 3. 初始化:将系数向量初始化为零向量,设置最大迭代次数。 4. 迭代计算:循环执行以下步骤直到满足停止条件: a. 计算残差:计算当前重构信号和原始信号的残差。 b. 计算投影:将残差与原子矩阵进行内积,得到投影系数。 c. 选择最大投影:从所有的投影系数中选择最大值,并将其对应的原子添加到重构信号中。 d. 更新系数:更新系数向量,将选择的原子的系数设为相应的投影系数。 e. 更新残差:更新残差,将选择的原子从残差中减去。 5. 停止条件:迭代次数达到最大值或者残差的范数小于给定阈值。 最后,通过得到的稀疏表示系数向量,可以通过原子矩阵进行线性重构,得到对给定信号的近似表示。 需要注意的是,具体使用OMP算法时,需根据实际问题进行参数设置,并对结果进行解释和评估。此外,Matlab中还包含其他用于稀疏表示的函数,如Basis Pursuit等,可以根据具体需求选择合适的方法。
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值