- 博客(3)
- 收藏
- 关注
原创 [Pytorch]<动手学深度学习>pytorch笔记-----SoftMax回归
1.引入需求:分类问题 让我们考虑一个简单的图像分类问题,其输入图像的高和宽均为2像素,且色彩为灰度。这样每个像素值都可以用一个标量表示。我们将图像中的4像素分别记为x1,x2,x3,x4。假设训练数据集中图像的真实标签为狗、猫或鸡(假设可以用4像素表示出这3种动物),这些标签分别对应离散值y1,y2,y3. 我们通常使用离散的数值来表示类别,例如y1=1,y2=2,y3=3。如此,一张图像的标签为1、2和3这3个数值中的一个。虽然我们仍然可以使用回归模型来进行建模,并将预测值就近定点化到1、2和3这
2021-10-10 10:25:08 365
原创 [Pytorch]<动手学深度学习>pytorch笔记-----线性回归
1.房屋价格预测的模型建立 1.1数学定义 设房屋的面积为,房龄为 ,售出价格为 y。我们需要建立基于输入 和 来计算输出 y 的表达式,也就是模型(model)。顾名思义,线性回归假设输出与各个输入之间是线性关系: 其中 和 是权重(weight),b 是偏差(bias),且均为标量。它们是线性回归模型的参数(parameter)。模型输出 是线性回归对真实价格 y 的预测或估计。我们通常允许它们之间有一定误差。 1.2模型训练 我们通常收集一系列的真实数据,例如多栋房屋的真实售出价格
2021-10-05 14:40:35 207
原创 [Pytorch]<动手学深度学习>pytorch笔记-----预备知识
1.创建Tensor 首先导入torch包 import torch 1.创建大小为5x3的未初始化的Tensor并输出 x = torch.empty(5,3) print(x) 结果: tensor([[0., 0., 0.], [0., 0., 0.], [0., 0., 0.], [0., 0., 0.], [0., 0., 0.]]) 2.创建大小为5x3的随机初始化的Tensor并输出 x = torch.ra
2021-10-03 11:22:39 197
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人