简单的轮播图

    <style>
        * {
            margin: 0;
            padding: 0;
        }

        img {
            vertical-align: top;
        }

        .box {
            width: 730px;
            height: 454px;
            margin: 100px auto;
            padding: 5px;
            border: 1px solid #ccc;
            background-color: #cccccc;

        }

        .inner {
            width: 730px;
            height: 454px;
            background-color: aliceblue;
            overflow: hidden;
            position: relative;
        }

        .inner ul {
            width: 1000%;
            position: absolute;
            top: 0;
            left: 0;
            z-index: 1;
        }

        .inner li {
            float: left;
            list-style: none;
        }

        .square {
            width: 135px;
            height: 20px;
            background-color: yellow;
            background: rgba(0, 0, 0, .3);
            border-radius: 10px;
            position: absolute;
            left: 50%;
            margin-left: -60px;
            bottom: 10px;
            z-index: 1;
        }

        .square span {
            float: left;
            width: 12px;
            height: 12px;
            border-radius: 50%;
            margin: 4px 5px;
            display: inline-block;
            cursor: pointer;
            background-color: #fff;
            text-align: center;
            line-height: 16px;
        }

        .square .current {
            background-color: yellow;
            color: gray;
        }
        
    </style>
<div class="box" id="box">
    <div class="inner">
        <ul>
            <li><a href="#"><img src="img/1.jpg" alt=""></a></li>
            <li><a href="#"><img src="img/2.jpg" alt=""></a></li>
            <li><a href="#"><img src="img/3.jpg" alt=""></a></li>
            <li><a href="#"><img src="img/4.jpg" alt=""></a></li>
            <li><a href="#"><img src="img/5.jpg" alt=""></a></li>
            <li><a href="#"><img src="img/6.jpg" alt=""></a></li>
        </ul>
        <div class="square">
            <span class="current"></span>
            <span></span>
            <span></span>
            <span></span>
            <span></span>
            <span></span>
        </div>
    </div>
</div>
<script>
    //获取最外面的div
    var box = my$("box");
    //获取相框
    var inner = box.children[0];
    //获取相框宽度
    var imgWidth = inner.offsetWidth;
    //获取ul
    var ulObj = inner.children[0];
    //获取span
    var spanObjs = inner.children[1].children;


    //循环遍历span,注册鼠标进入事件
    for (var i = 0; i < spanObjs.length; i++) {
     //循环的时候把索引值保存在每个span的自定义属性中
     spanObjs[i].setAttribute("index", i);
     //注册事件
     spanObjs[i].onmouseover = function () {
     //设置鼠标移入的样式
     for (var j = 0; j < spanObjs.length; j++) {
     spanObjs[j].removeAttribute("class");
     }
     this.className = "current";

     //移动ul(每个图片的宽*鼠标放在当前按钮的索引值)
     //获取索引
     var index = this.getAttribute("index");
     animate(ulObj, -index * imgWidth);
     };
     }

</script>

在这里插入图片描述

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值