非线性卡尔曼滤波
文章平均质量分 78
V建模忠哥V
在读博士!
展开
-
扩展卡尔曼滤波(EKF)的限制
当f (x)或h (x)接近线性时,EKF在许多实际问题上表现良好。然而,它在高度非线性的区域中失败了EKF的概念是基于模型的线性化而提出的。EKF估计包括线性化误差。线性化误差取决于相对于传播的不确定度的函数的非线性度,如下图所示。图13.13:线性化误差。原创 2024-10-31 09:09:00 · 155 阅读 · 0 评论 -
关于卡尔曼滤波中的非线性问题
在深入研究问题解决方案之前,我们必须了解问题本身。什么是非线性系统,为什么标准的线性卡尔曼滤波器在非线性系统中失效?我们区分了两种非线性关系:1.状态到测量的非线性关系2.非线性系统动力学我们将分别处理每种类型的非线性,然后将它们结合起来。首先,让我们从一个线性系统的例子开始。原创 2024-10-30 22:17:10 · 606 阅读 · 0 评论 -
无迹卡尔曼滤波器(UKF)
正如我们在前一章中所看到的,当状态转移模型f (x)和观测模型h (x)接近于线性时,EKF的性能是令人满意的。然而,当f (x)或h (x)模型是高度非线性的时,线性化误差会导致与状态的真实值显著不同的估计,以及不能捕获状态中的真实不确定性的估计不确定性。无迹卡尔曼滤波器是线性化的另一种方法。扩展卡尔曼滤波器使用解析线性化来处理非线性,而无迹卡尔曼滤波器基于一组规则进行无味变换(UT)-统计线性化。杰弗里·乌尔曼最初提出了无香味变换(UT)作为他的博士论文[18]的一个组成部分;原创 2024-10-30 21:40:35 · 699 阅读 · 0 评论